ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > Information Technology > IT±â¼ú
3D Printing Materials 2015-2025: Status, Opportunities, Market Forecasts
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-11
ºÐ·® 132 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

The 3D Printing Materials market to overtake the 3D Printer market in 2023 and reach $8.3bn by 2025.

This report covers the current and future status, opportunities and market forecasts of 3D printing materials. It contains many illustrative and analytical figures and tables plus profiles of 16 companies, from across the globe, who supply a wide variety of materials for 3D printing. Interviews with 8 industrial end-users describe their experiences with 3D printing and give insight into their needs.

Upon request the original PowerPoint can be included free of charge as part of the report purchase.

3D Printing Materials

Gone are the days of 3D Printing being synonymous with Rapid Prototyping; the days of Additive Manufacturing are here.

Since the 1980s, when 3D Printing was first commercialised, it has grown reasonably slowly, being adopted mostly for small scale prototyping. In 2009, Stratasys' key patent expired, the market place became flooded with cheap thermoplastic extruders, interest exploded, and the market for thermoplastic filament rocketed. It is expected to reach over $1B by 2025, despite the falling price per kg.

This new interest inspired developments in many technologies to 3D print a wider variety of materials. A brief overview of each of these technologies is outlined in this report. But not all materials are equal. This report outlines the advantages and disadvantages of printing in different materials, the applications of each, and technical data on the properties of 3D printed materials, which often differ from their traditionally manufactured analogue. These new materials mean there has been space for many new companies, and also many acquisitions by 3D printer manufacturers. Information on start-ups, closures, mergers and acquisitions is included.

No longer is 3D Printing used only for one-off pieces and prototypes, but for final part production of items with reduced and simplified assembly, quicker design iterations, greater design freedom, mass customisation and minimal material wastage. For these reasons, 3D Printing is already common in aerospace, orthopaedic, jewelry and dental sectors. Adoption is fast-growing in education, military, architecture, medical research, and automotive sectors. Nineteen end markets, including all of these have been investigated. The most common applications, technologies and materials vary by geography so the current markets and growth rates are split by region. Changes in use will lead to different growth rates for different materials.

Figure 1: Relative markets of the 7 key 3D Printing Materials in 2014 and 2025
Source: IDTechEx

This massive growth in the use and applications of 3D Printers is encouraging a massive growth in the market for 3D Printing Materials. Detailed forecasts, using information from interviews with 50 key players in the industry and disclosed financial information, estimate seven key materials are expected to have a total market of over $8B by 2025. This report includes detailed state of the market, in terms of market value and volume, for:

  • Photopolymers
  • Thermoplastic filaments
  • Thermoplastic powders
  • Metal powders
  • Sand and binder
  • Welding wire
  • Plaster

The value chain for 3D printing materials is complicated because several major industrial printer manufacturers engage in "vendor lock-in" in a way analogous to 2D printers, but cheaper 3D printers allow the purchase of free market materials. The chapter on the value chain clarifies the situation, and quantifies the markets at each stage of the chain. There are separate price projections and forecasts for these two approaches and for different end-user behaviours.

The report also includes discussions on developments for emerging materials including:

  • Electrically conducting materials
  • Silicone
  • Biomaterials
  • Carbon fibre
  • Regolith
  • Ceramics
  • Graphene1

Disruptive technologies which have the potential to dramatically change the market have also been investigated, including desktop thermoplastic recyclers, cheaper ways of producing metal powders, competing ways to prototype and new 3D printing technologies.




ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.