회원가입 | 연락처 | 사이트맵 | English

      회사소개 | 리포트 | 커스텀 리서치 | 고객지원


로그인

카테고리

유/무선통신

전기/전자

디지털기기/미디어/방송

Information Technology

에너지

생명공학

화학/신소재

자동차

환경

일반소비재

마케팅/광고

금융

건설

교통/운송

소비자조사

방위/항공/우주

식음료

중공업

교육

기계

무역

스포츠/레저

해운/조선

패션

정부/정책

공예/귀금속

컴퍼니 프로파일

기타산업

 
현재위치 : HOME > 리포트 > 에너지 > 연료전지
Stationary Fuel Cell Market Shares, Strategies, and Forecasts, Worldwide, 2011 to 2017
발행사 WinterGreen Research

발행일 2011-02
분량 469 pages
서비스형태 Report
판매가격

인쇄하기

Stationary Fuel Cell: Distributed Power in Campus Locations Harnessing the Intermittent Renewable Energy from Wind and Solar to Create End to End Energy Delivery Systems

Check Out These Key Topics

Stationary Fuel Cell Forecasts
Stationary Fuel Cell Market Development
Continued Fuel Cell Commercialization
Fuel Cell Operation
Fuel Environmental Issues
Power of a Fuel Cell
Hydrogen Fuel Cell Technology
On Grid And Off Grid Issues
Impact of Deregulation
Fuel Cell Issues
Fuel Cell Reliability
Laws and regulations
Solid Oxide Fuel Cells (SOFC)
Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC)
Molten Carbonate Fuel Cells (MCFC)
PEM Technology
Proton Exchange Membrane (PEM)
Fuel Cells
PEM Fuel Cells
Platinum Catalysts
Vision For The New Electrical Grid
Fuel Cell Clean Air Permitting
Increased Power Density

Stationary Fuel Cell Market Shares, Strategies, and Forecasts, Worldwide, 2011 to 2017

WinterGreen Research announces that it has a new study on Stationary Fuel Cells. Stationary Fuel Cell markets grow as the technology supports smaller more diverse units. The new study has 469 pages and 175 tables and figures.

These markets are poised to grow based on the creation of new efficiencies available directly to campus environments needing distributed energy that is separate from the grid. New composite materials based on nanotechnology are providing specialized high temperature ceramics catalyst materials to make systems more cost effective are achieving consistent price declines throughout the forecast period.

Distributed generation (DG) refers to power generation at the point of consumption. Generating power on-site, rather than centrally, eliminates the cost, complexity, interdependencies, and inefficiencies associated with transmission and distribution. Like distributed computing (i.e. the PC) and distributed telephony (i.e. the mobile phone), distributed generation shifts control to the consumer.

Distributed energy generation is the core of renewable energy from wind and solar. These intermittent sources of renewable energy are only feasible if there is a reliable way to store the energy for use when the wind is not blowing and when it is dark out. Stationary fuel cells provide that.

The electricity from the renewable energy can be used to manufacture hydrogen in a campus environment. Future generations of stationary fuel cells including Bloom Energy's energy servers offer the unique capacity to operate as an energy storage device, thus creating a bridge to a 100% renewable energy future.

Bloom Energy is a distributed generation solution that is clean and reliable and affordable all at the same time. Bloom's energy servers can produce clean energy 24 hours per day, 365 days per year, generating more electrons than intermittent solutions, and delivering faster payback and greater environmental benefits for the customer. DG systems require modest installations, sunny and provide consistent 24/7/365 load.

As distributed generation moves to the forefront of corporate consciousness, stationary fuel cells including Bloom Energy Servers are designed to meet the needs of economically and environmentally minded companies.

Renewable energy is intermittent and needs stationary fuel cells to achieve mainstream adoption as a stable power source. Wind and solar power cannot be stored except by using the energy derived from these sources to make hydrogen that can be stored. Most likely the wind and tide energy will be transported as electricity to a location where the hydrogen can be manufactured. It is far easier to transport electricity than to transport hydrogen.

Stationary fuel cell markets need government sponsorship. As government funding shifts from huge military obligations, a sustainable energy becomes to most compelling investment model for government sponsored development. Stationary Fuel Cells are a good technology in need of further investment to make the entire renewable energy spectrum competitive.

FuelCell Energy is positioned to offer ultra-clean and reliable power generation. A fuel cell power plant helps meet the needs of customers efficiently. Systems improve the air quality in a service territory. Fuel cell is an electrochemical device that combines hydrogen fuel and oxygen from the air to produce electricity, heat, and water.

Direct FuelCell (DFC) power plants are designed to efficiently use fuels and provide renewable and ultra-clean baseload power. FuelCell Energy implements molten carbonate fuel cell (MCFC) power plants that depend on electrolyte for large, high-temperature fuel cells. The electrolyte uses a liquid solution of lithium, sodium and/or potassium carbonates, soaked in a matrix material. They operate at 650 degrees C. They are generally large systems with power ranges that extend to 2 mW. Their large size and mass limits the technology to large stationary applications. Fuel Cell Energy uses a nickel catalyst.

FuelCell Energy stationary fuel cells are used in data centers, universities, commercial and institutional facilities. As an environmentally friendly power source, fuel cells are reliable, provide a consistent voltage output, run on various fuels, and produce both electricity and heat. Those advantages have led to stationary fuel cell installations in retail stores, telecommunication facilities, hospitals, and schools.

According to Susan Eustis, primary author of the study, 'growth is spurred by the need to store the intermittent energy generated from renewable sources. Electricity generated from wind and solar can be stored as hydrogen and used in stationary fuel systems. Trends toward technology breakthroughs depend on investment in nanotechnology.'

Global demand for stationary fuel cells is projected to increase from $122.9 million in 2010 to $2.6 billion in 2017. Growth of stationary fuel cells is a function of the need to harness intermittent energy generated from renewable wind and solar energy sources. By using stationary fuel cells to address issues relating to intermittency an end to end energy system is achieved.


회사소개 | 개인정보보호정책 | 이용약관 | 배송/결제안내 | 이용안내

서울시 강남구 논현동 210-1 삼원빌딩 | 회사명 : (주)엘앤에치
대표전화 : 02-554-0001 / 팩스 : 02-3444-5501 / 이메일 : sales@landh.co.kr
Copyright ⓒ 2008 LNH, Inc. All rights reserved.