ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ÀÚµ¿Â÷ > Àü±âÀÚµ¿Â÷
Range Extenders for Electric Vehicles Land, Water & Air 2015-2025
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-10
ºÐ·® 163 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Range extender market in 2025
  • 1.2. EV market 2015 and 2025 identifying hybrids
  • 1.3. Hybrid and pure electric vehicles compared
  • 1.4. Hybrid market drivers
  • 1.5. What will be required of a range extender 2015-2025
  • 1.6. Three generations of range extender
  • 1.7. Why range extenders need lower power over the years
  • 1.8. Energy harvesting - mostly ally not alternative
  • 1.9. Key trends for range extended vehicles
  • 1.10. Combining heating and range-extension for electric vehicles
  • 1.11. Emergency range extenders
  • 1.12. Latest timelines
    • 1.12.1. Piston engine use and rotary engine tests
    • 1.12.2. Gas turbines
    • 1.12.3. Fuel cell rollouts
  • 1.13. BMW
  • 1.14. Effect of 2015 Oil Price Collapse on Electric Vehicles
  • 1.15. Range extender synergy with energy harvesting
  • 1.16. Interviews September 2015
  • 1.17. Lessons from CENEX LCV event UK September 2015

2. INTRODUCTION

  • 2.1. Types of electric vehicle
  • 2.2. Many fuels
  • 2.3. Born electric
  • 2.4. Pure electric vehicles are improving
  • 2.5. Series vs parallel hybrid
  • 2.6. Modes of operation of hybrids
    • 2.6.1. Plug in hybrids
    • 2.6.2. Charge-depleting mode
    • 2.6.3. Blended mode
    • 2.6.4. Charge-sustaining mode
    • 2.6.5. Mixed mode
  • 2.7. Microhybrid is a misnomer
  • 2.8. Deep hybridisation
  • 2.9. Battery cost and performance are key
  • 2.10. Hybrid price premium
  • 2.11. What is a range extender?
    • 2.11.1. First generation range extender technology
    • 2.11.2. Second generation range extender technology
    • 2.11.3. Third generation range extender technology
  • 2.12. PEM fuel cells
  • 2.13. Market position of fuel cell range extenders
  • 2.14. Energy harvesting and regenerative acceleration

3. MARKETS AND TECHNOLOGIES FOR REEVS

  • 3.1. Range extenders for land craft
  • 3.2. Range Extenders for electric aircraft
    • 3.2.1. Military aircraft
  • 3.3. Comparisons
  • 3.4. Fuel cells in aviation
  • 3.5. Civil aircraft
  • 3.6. Range extenders for marine craft

4. RANGE EXTENDER DEVELOPERS AND MANUFACTURERS

  • 4.1. Advanced Magnet Laboratory USA
  • 4.2. AeroVironment / Protonex Technology USA
  • 4.3. Austro Engine Austria
  • 4.4. Bladon Jets UK
  • 4.5. BMW Germany
  • 4.6. Brayton Energy USA
  • 4.7. Capstone Turbine Corporation USA
  • 4.8. Compound Rotary Engines UK
  • 4.9. Daimler AG inc Mercedes Benz Germany
  • 4.10. DLR German Aerospace Center Germany
    • 4.10.1. Free piston range extenders
  • 4.11. Duke Engine axial piston
  • 4.12. EcoMotors
  • 4.13. Ener1 USA
  • 4.14. ETV Motors Israel
  • 4.15. FEV USA
  • 4.16. Flight Design Germany
  • 4.17. Getrag Germany
  • 4.18. GSE USA
  • 4.19. Hüttlin Germany
  • 4.20. Hyperdrive UK
  • 4.21. Libralato UK
    • 4.21.1. Libralato technology
    • 4.21.2. Avoiding the problems of the Wankel engine
    • 4.21.3. The company
  • 4.22. Intelligent Energy UK
  • 4.23. KSPG Germany
  • 4.24. LiquidPiston USA
  • 4.25. Lotus Engineering UK
  • 4.26. MAHLE Powertrain UK
  • 4.27. Mazda Japan
  • 4.28. Peec-Power BV The Netherlands
  • 4.29. Polaris Industries Switzerland
  • 4.30. Powertrain Technologies UK
  • 4.31. Proton Power Systems plc UK/Germany
  • 4.32. Ricardo UK
  • 4.33. Suzuki Japan
  • 4.34. Toyota Japan
  • 4.35. Urbee Canada
  • 4.36. Volkswagen Germany
  • 4.37. Volvo Sweden/China
    • 4.37.1. Long term major work
    • 4.37.2. Volvo V8 performance with four cylinders
  • 4.38. Warsaw University of Technology, Poland

5. RANGE EXTENDER INTEGRATORS

  • 5.1. ACAL Energy UK
  • 5.2. Airbus (formerly EADS) Germany
  • 5.3. Altria Controls USA
  • 5.4. Ashok Leyland India
  • 5.5. Audi Germany
  • 5.6. AVL Austria
  • 5.7. Azure Dynamics USA
  • 5.8. BAE Systems UK
  • 5.9. BMW Germany
  • 5.10. Boeing Dreamworks USA
  • 5.11. Chrysler USA
  • 5.12. ENFICA-FC Italy
  • 5.13. Ford USA
  • 5.14. Frazer-Nash UK
  • 5.15. General Motors including Opel
  • 5.16. Honda Japan
  • 5.17. Hyundai Korea
  • 5.18. Jaguar Land Rover UK
  • 5.19. Langford Performance Engineering Ltd UK
  • 5.20. Marion HSPD USA
  • 5.21. Pipistrel Slovenia
  • 5.22. SAIC China
  • 5.23. Skyspark Italy
  • 5.24. Suzuki Japan
  • 5.25. Tata Motors India
  • 5.26. Toyota Japan
  • 5.27. Université de Sherbrooke Canada
  • 5.28. University of Stuttgart Germany
  • 5.29. Volvo Sweden/ China
  • 5.30. Wrightspeed USA
  • 5.31. Yo-Avto Russia

6. RECENT ADVANCES

  • 6.1. Latest update on Taiwan Automotive International Forum and Exhibition October 2014
  • 6.2. Electric vehicles set for 2014 MPG Marathon
  • 6.3. Hydrogen fuel cell range extenders double the range of EV trucks

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Numbers of EVs, in thousands, sold globally, 2015-2025 by applicational sector
  • 1.2. Number of hybrid vehicles sold globally (in thousands), this being approximately equal to the number of range extender sets in later years
  • 1.3. Number of hybrid vehicles sold globally (in thousands), this being approximately equal to the number of range extender sets in later years
  • 1.4. Range extender numbers (thousand), unit price (US$) and market value (US$ million) 2015-2025
  • 1.5. Three generations of range extender with examples of construction, manufacturer and power output
  • 2.1. Price premium for hybrid buses
  • 4.1. Data for RQ-11A version of AeroVironment Raven

FIGURES

  • 1.1. Range extender numbers (thousand) 2015-2025
  • 1.2. Range extender unit price (US$) 2015-2025
  • 1.3. Range extender market value (US$ million) 2015-2025
  • 1.4. Advantages and disadvantages of hybrid vs pure electric vehicles
  • 1.5. Indicative trend of charging and electrical storage for large hybrid vehicles over the next decade
  • 1.6. Evolution of construction of range extenders over the coming decade
  • 1.7. Examples of range extender technology in the shaft vs no shaft categories
  • 1.8. Trend of size of largest (in red) and smallest (in green) fuel cell sets used in bus trials worldwide 1991-2011
  • 1.9. Evolution of lower power range extenders for large vehicles
  • 1.10. The most powerful energy harvesting in vehicles
  • 1.11. The gull wing BMW i8
  • 2.1. ThunderVolt hybrid bus
  • 2.2. BAE Systems powertrain in a bus
  • 2.3. Hybrid bus powertrain
  • 2.4. Hybrid car powertrain using CNG
  • 2.5. Mitsubishi hybrid outdoor forklift replacing a conventional ICE vehicle
  • 2.6. Hybrid military vehicle that replaces a conventional ICE version
  • 2.7. Hybrid sports boat replacing a conventional ICE version
  • 2.8. CAF-E hybrid motorcycle design based on a Prius type of drivetrain
  • 2.9. Hybrid tugboat replacing a conventional ICE version to meet new pollution laws and provide stronger pull from stationary
  • 2.10. Some hybrid variants
  • 2.11. Evolution of plug in vs mild hybrids
  • 2.12. Trend to deep hybridisation
  • 2.13. Evolution of hybrid structure
  • 2.14. Battery price assisting price of hybrid and pure electric vehicles as a function of power stored
  • 2.15. The principle of the Proton Exchange Membrane fuel cells
  • 3.1. Northrop Grumman surveillance airship with fuel cell range extender and energy harvesting for virtually unlimited range
  • 3.2. Light utility aircraft - power-systems weight comparison
  • 3.3. Light primary trainer - power-systems weight comparison
  • 3.4. Battery and jet fuel loading
  • 3.5. Pilot plus payload vs range for fuel cell light aircraft and alternatives
  • 3.6. Total weight vs flight time for PEM fuel cell planes
  • 3.7. Takeoff gross weight breakdowns. Left: Conventional reciprocating-engine-powered airplane. Right: Fuel-cell-powered airplane.
  • 3.8. JAMSTEC Fuel Cell Underwater Vehicle FCUV
  • 4.1. AeroVironment Raven
  • 4.2. Raven enhancement
  • 4.3. Aqua Puma
  • 4.4. AeroVironment Helios
  • 4.5. Global Observer first flight August 2010
  • 4.6. Bladon Jets gas turbine range extender for cars and light aircraft and the Jaguar CX75
  • 4.7. Jaguar Land Rover
  • 4.8. Latest Bladon Jets design
  • 4.9. Range extender for BMW i3 electric car
  • 4.10. Capstone microturbine
  • 4.11. Capstone turbine in a Japanese bus
  • 4.12. Various sizes of Capstone MicroTurbines
  • 4.13. Daimler roadmap for commercial vehicles
  • 4.14. DLR fuel cell and the electric A320 airliner nose wheel it drives when the airliner is on the ground.
  • 4.15. Holstenblitz fuel cell car trial
  • 4.16. A new power generator for hybrid vehicles
  • 4.17. EcoMotors opposing piston range extender
  • 4.18. FEV extreme downsized range extender engine
  • 4.19. GSE mini diesel driving a propeller
  • 4.20. Greg Stevenson (left) and Gene Sheehan, Fueling Team GFC contender, with GSE Engines.
  • 4.21. Block diagram of the Frank/Stevenson parallel hybrid system
  • 4.22. Libralato cycle
  • 4.23. Fuel cell taxi trials
  • 4.24. Fuel cell development
  • 4.25. KSPG 30kW V2 range extender for small cars
  • 4.26. The LiquidPiston engine
  • 4.27. New two cylinder range extender from Lotus Engineering
  • 4.28. Lotus hybrid powertrain and second generation range extender ICE
  • 4.29. Lotus three and two cylinder range extenders
  • 4.30. Proton EMAS
  • 4.31. MAHLE range extenders
  • 4.32. MAHLE compact range extender
  • 4.33. MAHLE range extender at EVS26 2012
  • 4.34. Polaris REX range extender left with generator, right with peripherals as well
  • 4.35. Location of technical advances in Polaris range extender
  • 4.36. Ricardo Wolverine engine for hybrid UAVs
  • 4.37. Toyota FPEG options and piston geometry
  • 4.38. Volkswagen XL1 hybrid concept
  • 5.1. Adura powertrain with microturbine.
  • 5.2. Ashok Leyland CNG hybrid bus
  • 5.3. Azure Dynamics hybrid powertrain
  • 5.4. Bus with BAE Systems hybrid power train
  • 5.5. Boeing fuel cell aircraft
  • 5.6. ENFICA FC two seater fuel cell plane
  • 5.7. Ford Lincoln hybrid car offered at no price premium over the conventional version
  • 5.8. Frazer-Nash EREV powertrain
  • 5.9. Namir EREV Supercar
  • 5.10. Proton Exora
  • 5.11. Chevrolet Volt powertrain
  • 5.12. Honda IMA
  • 5.13. Hyundai Blue hybrid car
  • 5.14. Hyundai fuel cell powered car
  • 5.15. The LPE REEV concept car
  • 5.16. Marion Hyper-Sub Submersible Powerboat
  • 5.17. Skyspark in flight
  • 5.18. Suzuki Burgman fuel cell scooter
  • 5.19. Suzuki concept fuel cell motorcycle headed for production
  • 5.20. Tata Motors roadmap for hybrid commercial vehicles
  • 5.21. Toyota Prius hybrid car is the world's best selling electric car
  • 5.22. Toyota hybrid forklift
  • 5.23. Hybrid quad bike
  • 5.24. Hydrogenius
  • 5.25. Volvo hybrid bus
  • 5.26. Volvo technical concept 1
  • 5.27. Volvo technical concept 2
  • 5.28. Volvo technical concept 3



ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.