ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ÀÚµ¿Â÷ > ÀÚµ¿Â÷¿ëÇ°/»ê¾÷
Autonomous Vehicles Land, Water, Air 2015-2035
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-11
ºÐ·® 218 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents


1. EXECUTIVE SUMMARY

1.1. Definition

1.2. Timeline

1.3. Sophistication vs continuity

1.4. Highly automated and fully automated

1.5. Benefits and paybacks

1.6. Degree of difficulty

1.7. Why go autonomous?

1.8. Hype curve for autonomous vehicles land, water, air

1.9. Technology

1.10. Market size

1.11. Effect of 2015 oil price collapse on electric vehicles

1.12. Lessons from SMMT Connected London March 2015


2. INTRODUCTION

2.1. Definitions

2.2. Vibrant sectors

2.3. Drive Train Technology

2.4. Control and navigation technology

2.4.1. Vehicle with or without infrastructure

2.4.2. Autonomous land vehicle without infrastructure

2.5. Autonomous driving or green driving?

2.6. Effect of 2015 oil price collapse on electric vehicles


3. TECHNOLOGIES FOR AUTONOMOUS VEHICLES

3.1. System architecture and technology

3.2. Sensor Individual Technologies

3.3. Autonomous Vehicles Research Platforms

3.4. Cameras in drones

3.5. Valeo

3.6. Velodyne LiDAR


4. AUTONOMOUS CARS AND TAXIS

4.1. Introduction

4.2. Google

4.3. Uber

4.4. BMW

4.5. Mercedes

4.6. Nissan IDS Concept

4.7. Tesla

4.8. UK Autodrive consortium

4.9. Delphi autonomous car 2015

4.10. DOT Product USA

4.11. Autonomous car research in Korea

4.11.1. 2015 EVS28 exhibition and conferences Korea

4.11.2. The Korea smart car development activities


5. OFF-ROAD LAND AVS

5.1.1. Robot vacuum cleaners

5.1.2. Robot lawn mowers

5.1.3. Sidewalk delivery robot

5.1.4. Agricultural autonomous quadbike

5.1.5. Land-based military

5.1.6. Force multiplier

5.1.7. Many operating modes and programs

5.1.8. Lockheed Martin AMAS kits

5.1.9. US Army technology roadmap

5.1.10. Imaging and Payload UGV Technology

5.1.11. Evolution of Technology Standards, COTS and Engineering Innovation


6. PERSONAL AND COMMERCIAL AVS

6.1.1. Tetwalkers

6.1.2. coModule autonomous bike

6.1.3. Disaster search and rescue

6.2. Agriculture and mining


7. AUTONOMOUS MARINE VEHICLES - SURFACE CRAFT

7.1.1. Unmanned boat gathering oil USA

7.1.2. ReVolt unmanned zero emission short sea ship of the future


8. AUTONOMOUS UNDERWATER VEHICLES (AUVS)

8.1. Introduction

8.2. Large AUVs

8.3. Small AUVs

8.4. Swimmers vs gliders

8.4.1. Definitions

8.4.2. Demand

8.4.3. Woods Hole Oceanographic Institution USA

8.4.4. Monterey Bay Aquarium Ocean Research Institute USA

8.4.5. Florida Atlantic University USA

8.4.6. OceanServer Technology USA

8.4.7. Kongsberg Norway

8.4.8. Teledyne USA, Iceland

8.4.9. Autosub6000 UK

8.4.10. a.r.s Technologies GmbH Germany

8.4.11. DRDO India

8.4.12. JAMSTEC Japan

8.4.13. NASA USA

8.5. Deploying AUVs Canada

8.6. Wave and sun powered sea gliders

8.6.1. Virginia Institute of Marine Science USA

8.6.2. Falmouth Scientific Inc USA

8.6.3. Liquid Robotics USA

8.7. Network of unmanned undersea platforms assist manned vessels

8.8. Biomimetic unmanned underwater craft

8.8.1. Robot jellyfish USA and Germany


9. UNMANNED AERIAL VEHICLES (UAVS)

9.1.1. Definitions and scope

9.2. Needs

9.2.1. Diving UAV

9.3. Small unmanned aerial vehicles

9.3.1. Introduction

9.3.2. Airbus becomes a quadcopter user in 2014

9.3.3. UAR postal delivery

9.3.4. AeroVironment Raven, Puma, Hummingbird

9.3.5. AirShip Technologies Group

9.3.6. Hirobo Japan

9.3.7. Lockheed Martin seeds

9.3.8. Robot insects USA

9.3.9. University of Michigan bat, solar plane USA

9.3.10. Lite Machines Corporation USA

9.3.11. NRL launch an unmanned aerial vehicle from a submerged submarine

9.3.12. Quadcopter piloted by smartphone: Vienna University of Technology

9.4. Some new uses of small UAVs 2014-5

9.4.1. Mini helicopters tracking weeds Australia

9.4.2. Drones learn how diseases spread Malaysia

9.4.3. Drones monitor killer whales Canada

9.4.4. NMSU tests unmanned aircraft over active mine USA

9.5. Swarming, self-healing networks of UAVs USA

9.6. Swarming 3D eye-bots in Germany

9.7. Large electrical UAVs

9.8. Planetary exploration

9.9. DOD upper atmosphere dirigible USA

9.9.2. VESPAS Europe

9.9.3. AeroVironment Helios and Global Observer

9.10. Aurora Flight Sciences USA

9.11. Lockheed Martin USA

9.11.1. Airbus HAPS solar plane

9.11.2. Facebook vs Google

9.11.3. Boeing and Versa USA, QinetiQ & Newcastle University UK

9.11.4. Japanese solar sail to Venus

9.11.5. NASA testing electric propulsion

9.12. UAV payload market

9.12.1. Amazon drone delivery

9.12.2. UAVs can recharge their batteries by perching on power lines




ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.