ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > Àü±â/ÀüÀÚ > ÀüÀÚºÎÇ°
Thermal Interface Materials 2015-2025: Status, Opportunities, Market Forecasts
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-07
ºÐ·® 209 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. INTRODUCTION

  • 1.1. Schematics to show the role of Thermal Interface Materials
  • 1.2. Comparison to Die Attach Technologies

2. EXECUTIVE SUMMARY

  • 2.1. Potential benefits of using TIMs
  • 2.2. Drivers for the improvement of TIMs
  • 2.3. Ten Types of Thermal Interface Material
  • 2.4. Factors which influence the choice of TIM
  • 2.5. Properties of Thermal Interface Materials
  • 2.6. Uses for thermal interface materials
  • 2.7. Materials by Application
  • 2.8. Thermal Interface Material Manufacturers
  • 2.9. Cost of TIM
  • 2.10. Market Share by TIM type in 2015
  • 2.11. Market Share by Application in 2015
  • 2.12. Market Share of Semiconductor Thermal Packaging in 2015
  • 2.13. Geographic Breakdown
  • 2.14. Forecast by TIM type
  • 2.15. Forecast by Application
  • 2.16. Forecast for Semiconductor Thermal Packaging Applications
  • 2.17. Factors affecting adoption
  • 2.18. Opportunities for developments
  • 2.19. Growing Markets

3. DRIVERS

  • 3.1. Causes of Electronic Failure
  • 3.2. Temperature increase in Power Electronic Applications
  • 3.3. Reducing temperature in Power Electronics Applications
  • 3.4. Potential benefits of using TIMs
  • 3.5. Drivers for the improvement of TIMs
  • 3.6. Key Factors in System Level Performance

4. CHARACTERISING TIMS

  • 4.1. TIM Designation
  • 4.2. Thermal Conductivity vs Thermal Resistance
  • 4.3. Thermal Testing of TIMs
  • 4.4. Three Methods for Testing of TIMs
  • 4.5. Laser Flash Diffusivity
  • 4.6. Hot Disk
  • 4.7. ASTM-D5470
  • 4.8. Problems with ASTM D5470
  • 4.9. Life-time Testing
  • 4.10. Adhesion Testing

5. TYPES OF THERMAL INTERFACE MATERIAL

  • 5.1. Ten Types of Thermal Interface Material
  • 5.2. Definitions of Benchmarking Terms
  • 5.3. Pressure-Sensitive Adhesive Tapes
  • 5.4. Thermal Liquid Adhesives
  • 5.5. Thermal Greases
  • 5.6. Problems with thermal greases
  • 5.7. Thermal Greases
  • 5.8. Viscosity of Thermal Greases
  • 5.9. Technical Data on Thermal Greases
  • 5.10. The effect of filler, matrix and loading on thermal conductivity
  • 5.11. Thermal Gels
  • 5.12. Thermal Pastes
  • 5.13. Technical Data on Gels and Pastes
  • 5.14. Elastomeric pads
  • 5.15. Advantages and Disadvantages of Elastomeric Pads
  • 5.16. Phase Change Materials (PCMs)
  • 5.17. Operating Temperature Range of Commercially Available Phase Change Materials
  • 5.18. Graphite
  • 5.19. Metal TIMs
  • 5.20. Solders or Phase Change Metals
  • 5.21. Which solder?
  • 5.22. Soft Solder vs Hard Solder
  • 5.23. Advantages and Disadvantages of Solders and Phase Change Metals
  • 5.24. Properties of solders
  • 5.25. Compressible Interface Materials
  • 5.26. Liquid Metal

6. BENCHMARKING OF THERMAL INTERFACE MATERIALS

  • 6.1. Ten Types of Thermal Interface Material
  • 6.2. Factors which influence the choice of TIM
  • 6.3. Operating Pressure
  • 6.4. Voids
  • 6.5. Properties of Thermal Interface Materials
  • 6.6. Comparison of Thermal Interface Materials
  • 6.7. Bounds on Thermal Conductivity of Commercially Available Thermal Interface Materials
  • 6.8. Maximum Operating Temperature of Commercially Available Thermal Interface Materials

7. RELATED TECHNOLOGIES

  • 7.1. Heat Spreaders
  • 7.2. Thermal Substrate Technologies
  • 7.3. Immersion Cooling
  • 7.4. Metallic foam heat exchangers - Versarien

8. EMERGING MATERIALS AND DISRUPTIVE TECHNOLOGIES

  • 8.1. Pyrolytic Graphite Sheet (PGS)
  • 8.2. Nanoparticle-Stabilized Solders - Kings College London
  • 8.3. Nano-structured ceramics - Cambridge Nanotherm
  • 8.4. New Conducting Particle Fillers for Thermal Greases
  • 8.5. Carbon Nanotubes (CNT)
  • 8.6. Carbon nanotubes - Stanford University
  • 8.7. Graphene
  • 8.8. Graphene - XG Science
  • 8.9. Graphene - NanoXplore
  • 8.10. Graphite Nanoplatelet - University of California Riverside
  • 8.11. 2D Boron Nitride
  • 8.12. Metal nanoparticle fillers - Inkron
  • 8.13. Nanostructured metal-polymer composites - Chalmers University of Technology
  • 8.14. Silver flake-based conductive adhesives - Showa Denko
  • 8.15. Efficiencies of fillers

9. MARKETS

  • 9.1. Uses for thermal interface materials
  • 9.2. Materials by Application
  • 9.3. LED Lighting
  • 9.4. Advances in LED lighting
  • 9.5. Effects of increasing the temperature of an LED
  • 9.6. Effects of increasing the temperature of an LED cont.
  • 9.7. Photovoltaics
  • 9.8. Effect of Temperature on Solar Cell Efficiency
  • 9.9. Concentrated Photovoltaics
  • 9.10. Lasers
  • 9.11. Evolution of laser technology
  • 9.12. Packaging of Laser Diodes to improve Thermal Management
  • 9.13. Solder as the TIM in lasers
  • 9.14. Semiconductor Thermal Packaging
  • 9.15. Targeted applications within Semiconductor Thermal Packaging
  • 9.16. Telecommunications Equipment
  • 9.17. Increasing heat flux from telecommunication equipment
  • 9.18. Automotive Electronics
  • 9.19. Consumer and Industrial Computing
  • 9.20. Examples of TIMs in Consumer and Industrial Computing
  • 9.21. Varieties of TIM in Consumer and Industrial Computing
  • 9.22. Defence and Aerospace
  • 9.23. Mobile Hand-held Devices
  • 9.24. Examples of TIM in Consumer Electronics
  • 9.25. Medical Electronics

10. EMERGING APPLICATIONS

  • 10.1. Silicon Carbide Semiconductors
  • 10.2. TIMs for Silicon Carbide Semiconductors
  • 10.3. Thermoelectric Generators

11. PATENTS AND PUBLICATIONS

  • 11.1. Google Trends
  • 11.2. Worldwide Patent Publications
  • 11.3. Scientific Journal Articles

12. KEY PLAYERS

  • 12.1. Thermal Interface Material Manufacturers

13. VALUE CHAINS

  • 13.1. Value Chain

14. STATE OF THE MARKET IN 2015

  • 14.1. Cost of TIM
  • 14.2. Market Share by TIM type in 2015
  • 14.3. Market Share by Application in 2015
  • 14.4. Market Share of Semiconductor Thermal Packaging in 2015
  • 14.5. Geographic Breakdown

15. FORECAST 2015-2025

  • 15.1. Forecast by TIM type
  • 15.2. Market Share by TIM type in 2025
  • 15.3. Bubble Plot by TIM type
  • 15.4. Forecast by Application
  • 15.5. Market Share by Application in 2025
  • 15.6. Forecast for Semiconductor Thermal Packaging Applications
  • 15.7. Market Share of Semiconductor Thermal Packaging in 2025
  • 15.8. Bubble Plot by Application

16. FORECAST NARRATIVE

  • 16.1. Forecast by TIM Type ($M)
  • 16.2. Forecast by Application Type ($M)
  • 16.3. Assumptions

17. LIMITATIONS, RESTRAINTS AND THREATS

  • 17.1. Factors affecting adoption
  • 17.2. Threats to the Industry

18. GLOBAL OPPORTUNITIES

  • 18.1. Opportunities for developments
  • 18.2. The winners will address...
  • 18.3. Growing Markets

19. COMPANY PROFILES

  • 19.1. 3M Electronic Materials
  • 19.2. AI Technology
  • 19.3. AIM Specialty Materials
  • 19.4. AOS Thermal
  • 19.5. Dow Corning
  • 19.6. DK Thermal
  • 19.7. Dymax Corporation
  • 19.8. Ellsworth Adhesives
  • 19.9. Enerdyne
  • 19.10. European Thermodynamics Ltd
  • 19.11. Fujipoly
  • 19.12. Fralock
  • 19.13. GrafTech
  • 19.14. Henkel
  • 19.15. Indium Corporation
  • 19.16. Inkron
  • 19.17. Kitagawa Industries
  • 19.18. Laird Tech
  • 19.19. LORD
  • 19.20. MH&W International
  • 19.21. Minteq
  • 19.22. Momentive
  • 19.23. Parker Chomerics
  • 19.24. Resinlab
  • 19.25. Schlegel Electronics Materials
  • 19.26. ShinEtsu
  • 19.27. Timtronics
  • 19.28. Universal Science



ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.