ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > Àü±â/ÀüÀÚ > µð½ºÇ÷¹ÀÌ
OLED Display Forecast 2015-2025: the Rise of Plastic and Flexible Displays
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-07
ºÐ·® 253 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. INTRODUCTION

  • 1.1. An industry transitioning from LCD manufacturing
  • 1.2. Why flexible displays?
    • 1.2.1. The need to differentiate
    • 1.2.2. Enabling future form factors
  • 1.3. Technology Roadmap: components needed for a flexible OLED display
  • 1.4. Technology roadmap: OLED televisions

2. OLED STRATEGIES BY DISPLAY MANUFACTURERS

  • 2.1. Samsung Display (SDC)
    • 2.1.1. Novaled acquisition
    • 2.1.2. A3 plant
    • 2.1.3. OLED TV
    • 2.1.4. Tablet displays
  • 2.2. LG Display (LGD)
  • 2.3. BOE
  • 2.4. AU Optronics (AUO)
  • 2.5. Shenzhen China Star Optoelectronics Technology (CSOT)
  • 2.6. Visionox
  • 2.7. Sony
  • 2.8. Panasonic
  • 2.9. Japan Display Inc (JDI)
  • 2.10. Sharp
  • 2.11. Toshiba

3. PROGRESS IN PRINTED OLED DISPLAYS

  • 3.1. Printed TFT backplanes
    • 3.1.1. Why print TFTs?
    • 3.1.2. Japan leading the R&D in printed TFTs
  • 3.2. Growing availability of printable OLED materials
    • 3.2.1. Polymer OLED from Cambridge Display Technology (Sumitomo)
    • 3.2.2. Solution processed small molecules
  • 3.3. Inkjet Printed OLED
    • 3.3.1. Printing vs. vapour deposition
    • 3.3.2. Panasonic
    • 3.3.3. Sony
    • 3.3.4. BOE
    • 3.3.5. AU Optronics
    • 3.3.6. Kateeva

4. MARKET SEGMENTATION FOR OLED DISPLAYS

  • 4.1. Mobile displays
  • 4.2. Computers: Tablets and Notebooks
  • 4.3. TV and monitors
    • 4.3.1. LGD taking the lead
    • 4.3.2. Competing technologies
  • 4.4. Wearable electronics
  • 4.5. Automotive and Aerospace
  • 4.6. Industrial and professional displays
  • 4.7. Microdisplays
  • 4.8. Others

5. MARKET FORECAST

  • 5.1. Definition of OLED display technologies
    • 5.1.1. AMOLED rigid glass
    • 5.1.2. AMOLED rigid plastic
    • 5.1.3. AMOLED flexible
    • 5.1.4. PMOLED
    • 5.1.5. Segmented
    • 5.1.6. Microdisplays
  • 5.2. Revenue forecast by market segment
  • 5.3. Shipment forecast by market segment
  • 5.4. Revenue forecast by technology
  • 5.5. Shipment forecast by technology
  • 5.6. Details by market segment
    • 5.6.1. Mobile phones
    • 5.6.2. Tablets/Notebooks
    • 5.6.3. TV and monitors
    • 5.6.4. Wearable devices
    • 5.6.5. Automotive and aerospace
    • 5.6.6. Industrial/Professional displays
    • 5.6.7. Microdisplays
    • 5.6.8. Others
  • 5.7. Additional figures
    • 5.7.1. Compound annual growth rate
    • 5.7.2. Market share for each segment
    • 5.7.3. Revenue forecast for Plastic and Flexible OLED displays

6. FLEXIBLE SUBSTRATES

  • 6.1. Requirements
    • 6.1.1. Key challenges of flexible substrates
    • 6.1.2. Process temperature by substrate type
  • 6.2. Benchmarking by material type
  • 6.3. Company profiles
    • 6.3.1. DuPont Teijin Films
    • 6.3.2. ITRI
    • 6.3.3. Samsung Ube Materials
    • 6.3.4. Kolon Industries
    • 6.3.5. Corning
    • 6.3.6. AGC Asahi Glass

7. BACKPLANE TECHNOLOGY

  • 7.1. Pixel circuit in Active Matrix backplanes
    • 7.1.1. OLED displays are current driven
    • 7.1.2. Amorphyx: replacing TFT with diodes
  • 7.2. Semiconductor materials
    • 7.2.1. Benchmarking of the main technologies
    • 7.2.2. Organic TFT
    • 7.2.3. Metal oxide TFT
  • 7.3. Passive matrix OLED (PMOLED)
  • 7.4. Company profiles
    • 7.4.1. Plastic Logic
    • 7.4.2. CBrite
    • 7.4.3. Arizona State University
    • 7.4.4. SmartKem
    • 7.4.5. Polyera
    • 7.4.6. Flexink
    • 7.4.7. Merck (EMD Chemicals)
    • 7.4.8. BASF

8. FRONTPLANE: OLED LAYERS

  • 8.1. Role of each layer
  • 8.2. Shadow mask vs. White OLED
    • 8.2.1. Fine metal mask (FMM)
    • 8.2.2. Yellow emitter with color filters
    • 8.2.3. White OLED approach
  • 8.3. Subpixel layouts
  • 8.4. Table of suppliers
  • 8.5. Suppliers in China
    • 8.5.1. Beijing Aglaia Technology Development Co
    • 8.5.2. Borun New Material Technology Co. (Borun Chemical Co)
    • 8.5.3. Jilin Optical & Electronic Materials Co
    • 8.5.4. Visionox
    • 8.5.5. Xi'an Ruilian Modern Electronic Chemicals Co., Ltd
  • 8.6. Suppliers in Europe
    • 8.6.1. Heraeus
    • 8.6.2. Merck
    • 8.6.3. Novaled
    • 8.6.4. Cynora
  • 8.7. Suppliers in Japan
    • 8.7.1. Hodogaya
    • 8.7.2. Idemitsu Kosan
    • 8.7.3. JNC (ex Chisso)
    • 8.7.4. Konica Minolta
    • 8.7.5. Mitsubishi Chemical Corporation
    • 8.7.6. Mitsui Chemicals
    • 8.7.7. Nippon Steel & Sumikin Chemical
    • 8.7.8. Nissan Chemical Industries
    • 8.7.9. Sumitomo Chemical
    • 8.7.10. Toray Industries
  • 8.8. Suppliers in Korea
    • 8.8.1. Cheil Industries
    • 8.8.2. Daejoo Electronic Materials Company
    • 8.8.3. Dow Chemical
    • 8.8.4. Duksan Hi-Metal
    • 8.8.5. LG Chem
    • 8.8.6. Sun Fine Chemical Co (SFC)
  • 8.9. Suppliers in Taiwan
    • 8.9.1. E-Ray Optoelectronics
    • 8.9.2. Luminescence Technology Co.
    • 8.9.3. Nichem Fine Technology
  • 8.10. Suppliers in USA
    • 8.10.1. DuPont
    • 8.10.2. Plextronics (Solvay)
    • 8.10.3. Universal Display Corporation

9. ITO REPLACEMENT: TRANSPARENT CONDUCTORS

  • 9.1. Developed for touch, used in displays
  • 9.2. A range of technologies available
  • 9.3. Table of suppliers
  • 9.4. Company profiles
    • 9.4.1. Blue Nano
    • 9.4.2. Cambrios
    • 9.4.3. CNano
    • 9.4.4. Canatu
    • 9.4.5. NanoIntegris
    • 9.4.6. Heraeus
    • 9.4.7. Agfa

10. BARRIER FILM TECHNOLOGY

  • 10.1. Why encapsulation is needed
    • 10.1.1. Organic semiconductors are sensitive to air and moisture
    • 10.1.2. Requirements for barrier films
    • 10.1.3. Different ways barriers are implemented
    • 10.1.4. Dyad concept
  • 10.2. Different barrier technologies available
    • 10.2.1. Pros and cons of each approach
    • 10.2.2. List of technology suppliers
  • 10.3. Vitex Technology (Samsung)
  • 10.4. Flexible glass
  • 10.5. Atomic Layer Deposition (ALD)
    • 10.5.1. Beneq
    • 10.5.2. Encapsulix

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 1.1. Technology roadmap for flexible OLED displays
  • 1.2. Technology roadmap for OLED televisions
  • 2.1. LGD flexible OLED panel
  • 2.2. Display production in mainland China
  • 4.1. Mobile phone brands with Samsung Display OLED panels
  • 5.1. OLED display market size by segments ($ million)
  • 5.2. OLED display market size by segments (M unit)
  • 5.3. OLED display market by display type ($ million)
  • 5.4. OLED display market by display type (M unit)
  • 7.1. Comparison of OTFT against other technologies
  • 7.2. Various flexible display demonstrators made with OTFT
  • 7.3. Current status of IGZO vs. a-Si and LTPS
  • 7.4. Various flexible display demonstrators made with oxide TFT
  • 8.1. Suppliers of OLED materials
  • 8.2. Material sales
  • 9.1. Table of suppliers
  • 10.1. Water vapor and oxygen transmission rates of various materials
  • 10.2. Requirements of barrier materials
  • 10.3. Dyads or inorganic layers on polymer substrates: main performance metrics for some of the most important developers

FIGURES

  • 1.1. Display value chain
  • 1.2. Difference between OLED and LCD
  • 1.3. Evolution of TFT-LCD glass substrate size
  • 1.4. Glass substrate sizes by generation
  • 1.5. Sizes from Gen 1 to Gen 10
  • 1.6. Multiple displays per glass sheet
  • 1.7. Example of increasing TV sizes
  • 1.8. Selling points of flexible displays
  • 1.9. Flexible displays will fill the gap which arises from the demand for more portable devices but larger screen sizes
  • 1.10. Possible evolution of form factors for mobile phones
  • 1.11. Possible evolution of form factors for tablets
  • 1.12. Basic stack structure of AMLCD and AMOLED
  • 1.13. Roadmap towards flexible AMOLED displays and flexible electronics devices
  • 2.1. Samsung AMOLED production
  • 2.2. Expected revenue growth for Samsung Display
  • 2.3. Choice of TFT technology for LCD and OLED
  • 2.4. Samsung's introduction to Youm
  • 2.5. Samsung's involvement in the key technologies for flexible OLED
  • 2.6. Samsung CapEx plan
  • 2.7. 55" and 77" curved OLED TV by LG
  • 2.8. WRGB OLED structure from LG
  • 2.9. Plastic OLED display at SID 2013
  • 2.10. Face sealing encapsulation
  • 2.11. Laser assisted release
  • 2.12. Circular plastic AMOLED
  • 2.13. Flexible display roadmap by LG Display
  • 2.14. AMOLED development from 2011 to 2013
  • 2.15. AMOLED technology for TV application
  • 2.16. BOE backplane technology development
  • 2.17. Flexible display rolled at 20mm curvature radius
  • 2.18. Structure of the flexible OLED display
  • 2.19. AUO OLED history
  • 2.20. Flexible 4.3" display demonstrated in 2010
  • 2.21. Flexible 5" AMOLED display presented at SID2014
  • 2.22. Shenzhen CSOT AMOLED roadmap
  • 2.23. Flexible PMOLED backplane
  • 2.24. Structure of the flexible PMOLED panel
  • 2.25. Visionox AMOLED project
  • 2.26. 3.5 inch LTPS flexible full-color AMOLED
  • 2.27. Super Top Emission
  • 2.28. Rollable 4.1" display presented in 2010
  • 2.29. Panasonic 4K 56" OLED TV at CES 2013
  • 2.30. Structure of a 4" OLED displays made on a PEN substrate
  • 2.31. JDI strategy
  • 2.32. Sharp's TFT technologies
  • 2.33. Flexible display with IGZO backplane presented at SID 2013
  • 2.34. Flexible 3.4" QHD OLED display by Sharp
  • 2.35. Sharp and Pixtronic MEMS
  • 2.36. Comparison between IGZO with a-Si and poly-Si
  • 2.37. Flexible AMOLED panel fabrication
  • 2.38. Photograph of the 10.2" flexible OLED display
  • 3.1. Traditional vs. printing methods
  • 3.2. Many printable semiconductor materials
  • 3.3. Device structure
  • 3.4. Electrical properties of the printed TFTs
  • 3.5. Fully printed, organic, thin-film transistor array
  • 3.6. Organic TFT based on ambient conductive metal nanoparticles
  • 3.7. Formation of organic semiconductor layer
  • 3.8. Transfer characteristics of printed OTFT
  • 3.9. Screen printed array
  • 3.10. Device structure with floating gate
  • 3.11. Offset based printing method
  • 3.12. Devices demonstrated by Toppan Printing
  • 3.13. Electrophoretic display with printed TFT array
  • 3.14. Electrophoretic display made with a printed TFT backplane at 200 ppi
  • 3.15. Inkjet printing process
  • 3.16. Photograph of the printed oxide TFTs on glass substrate
  • 3.17. PLED performance data
  • 3.18. Lifetime and efficiency
  • 3.19. Printing process
  • 3.20. UDC printable OLED materials
  • 3.21. Printing seen as an area of future growth (presented in June 2014)
  • 3.22. Characteristics of OLED production technologies
  • 3.23. Development of OLED printing
  • 3.24. Comparison of OLED printing versus OLED vapor deposition
  • 3.25. Panasonic 4K 56" OLED TV at CES 2013
  • 3.26. Sony 3" printed OLED demonstrator at SID 2011
  • 3.27. Printing process in 3 steps
  • 3.28. Structure of the hybrid printed OLED structure
  • 3.29. Pixel structure of the 17" printed OLED display
  • 3.30. Development of EL technology 1
  • 3.31. Development of EL technology 2
  • 3.32. Device structure
  • 3.33. Picture of the 65" printed TV
  • 3.34. Inkjet printing equipment designed for OLED display production
  • 3.35. Kateeva YIELDjet
  • 3.36. Improving the T95 lifetime
  • 4.1. S-Stripe pixel layout on the Motorola Moto X (left) and the Samsung Galaxy Note 2 (right)
  • 4.2. Samsung Galaxy Round and LG G Flex
  • 4.3. Concept of foldable phone display
  • 4.4. Concept of a rollable phone display
  • 4.5. Samsung Galaxy Tab S
  • 4.6. The world's first OLED tablet computer
  • 4.7. 55" and 77" curved OLED TV by LG
  • 4.8. Comparison with a conventional TV
  • 4.9. 55-in Crystal LED prototype
  • 4.10. Gear Fit smartwatch with 1.84" Curved Super AMOLED (432x128)
  • 4.11. Gear Fit curved display
  • 4.12. Samsung Gear S and LG G Watch R
  • 4.13. Asus ZenWatch with a 1.63" AMOLED display
  • 4.14. 1.3" PMOLED in a smartwatch
  • 4.15. LG Lifeband Touch with monochrome display
  • 4.16. Huawei Talkband B1 with monochrome display
  • 4.17. Futaba PMOLED
  • 4.18. Flexible display prototype driven by OTFT
  • 4.19. Apple Watch at the product launch event in September 2014
  • 4.20. PMOLED display used in Chrysler's Grand Cherokee
  • 4.21. PMOLED display used in GM's Chevrolet Corvette
  • 4.22. OLED display in the Lexus RX can display graphics and text
  • 4.23. Automotive displays from Futaba
  • 4.24. Digital rear-view mirror on the Audi R18 race car
  • 4.25. BMW M6 OLED display
  • 4.26. BMW M Performance Alcantara steering wheel with built-in PMOLED display
  • 4.27. AMOLED in automotive
  • 4.28. Sony 25" professional monitor
  • 4.29. eMagin's microdisplays
  • 4.30. Samsung NX30 with a 3" AMOLED display
  • 4.31. Microsoft Zune HD with 3.3" display
  • 4.32. The original Sony PSP Vita with a 5" OLED display
  • 4.33. Game controller with a small display
  • 5.1. OLED display market size by segments ($ million)
  • 5.2. OLED display market size by segments (M unit)
  • 5.3. OLED display market by display type ($ million)
  • 5.4. OLED display market by display type (M unit)
  • 5.5. Mobile phones ($ million)
  • 5.6. Mobile phones (M units)
  • 5.7. Tablet/Notebook displays ($ million)
  • 5.8. Tablet/Notebook displays (M units)
  • 5.9. TV and monitors ($ million)
  • 5.10. TV and monitors (M units)
  • 5.11. Wearable devices ($ million)
  • 5.12. Wearable devices (M units)
  • 5.13. Automotive and aerospace ($ million)
  • 5.14. Automotive and aerospace (M units)
  • 5.15. Industrial/Professional displays ($ million)
  • 5.16. Industrial/Professional displays (M units)
  • 5.17. Microdisplays ($ millions)
  • 5.18. Microdisplays (M units)
  • 5.19. Others ($ million)
  • 5.20. Others (M units)
  • 5.21. CAGR by market segment
  • 5.22. OLED market share for each segment as percentage of total market size
  • 5.23. Revenue forecast for plastic and flexible OLED displays
  • 6.1. Glass transition temperature (Tg) for various plastic substrates
  • 6.2. Upper operating temperature
  • 6.3. Heat stabilised PET and PEN
  • 6.4. Benchmarking based on 8 parameters
  • 6.5. FlexUP process for display backplane using a non-sticking debonding layer
  • 6.6. Key technologies for Samsung's flexible AMOLED displays
  • 7.1. Typical active matrix circuit for LCD, using one TFT and one storage capacitor per pixel
  • 7.2. (A) Example of a basic 2T1C circuit. (B) 4T1C circuit implementing voltage compensation
  • 7.3. Benchmarking of the semiconductor materials
  • 7.4. Improvement in carrier mobility of organic semiconductors over the last 30 years
  • 7.5. Organic materials can be rolled over a small radius
  • 7.6. Comparison between metal oxide and organic TFTs
  • 7.7. Foldable display by SEL and Nokia
  • 7.8. Tri-Fold Flexible AMOLED
  • 7.9. Historical annual sales from various suppliers of AMOLED and PMOLED
  • 7.10. Curved PMOLED display
  • 7.11. Film OLED product launch plan
  • 7.12. Glass-free OLED film
  • 7.13. Flexible PMOLED backplane
  • 7.14. Structure of the flexible PMOLED panel
  • 8.1. Typical OLED material stack in bottom emission OLED
  • 8.2. Function of each layer
  • 8.3. Various configurations for OLED materials
  • 8.4. Distinction between bottom-emission and top-emission OLED
  • 8.5. Vapour deposition using fine mesh mesh
  • 8.6. Alternatives to FMM
  • 8.7. Two-mask display architecture
  • 8.8. Simulation results for the two-mask display architecture
  • 8.9. WOLED was initially developed by Kodak
  • 8.10. Principles of tandem white OLED
  • 8.11. White OLED architecture used in microdisplays
  • 8.12. iPhone 5 (LCD), traditional RGB stripe
  • 8.13. Galaxy S3, Pentile S-stripe layout
  • 8.14. Galaxy S4, Diamond layout
  • 8.15. Galaxy S5 (diamond layout):
  • 8.16. Hodogaya business structure
  • 8.17. R&D activity of Idemitsu
  • 8.18. OLED material production plant, Paju
  • 8.19. Current performance of Konica Minolta
  • 8.20. Proprietary blue phosphorescent emitter
  • 8.21. Priority initiatives by sector
  • 8.22. Cheil Industries growth strategy
  • 8.23. Cheil's OLED materials sales
  • 8.24. Color performance from SFC
  • 8.25. Facilities in Korea
  • 8.26. UDC presentation slides
  • 8.27. UDC historical revenues
  • 9.1. Benchmarking different TCF and TCG technologies
  • 10.1. OLED and OPV have the most demanding requirements
  • 10.2. Schematic diagrams for encapsulated structures a) conventional b) laminated c) deposited in situ
  • 10.3. Scanning electron micrograph image of a barrier film cross section
  • 10.4. Design compromise for flexible barriers
  • 10.5. Lab WVTR achieved (in g/sq.m./day)in research for each of the companies involved in the development of flexible encapsulation solutions
  • 10.6. Surge in patent publications
  • 10.7. Examples of polymer multi-layer (PML) surface planarization a) OLED cathode separator structure b) high aspect ratio test structure
  • 10.8. Vitex multilayer deposition process
  • 10.9. SEM cross section of Vitex Barix material with four dyads
  • 10.10. Optical transmission of Vitex Barix coating
  • 10.11. Edge seal barrier formation by deposition through shadow masks
  • 10.12. Three dimensional barrier structure. Polymer is shown in red, and oxide (barrier) shown in blue
  • 10.13. Schematic of flexible OLED with hybrid encapsulation
  • 10.14. Corning's Flexible glass with protective tabbing on the edges



ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.