ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ¿¡³ÊÁö > ½Å/Àç»ý¿¡³ÊÁö
Thermoelectric Energy Harvesting 2014-2024: Devices, Applications, Opportunities
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2015-10
ºÐ·® 94 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Additional challenges and opportunities for thermoelectric devices

2. INTRODUCTION

  • 2.1. The Seebeck and Peltier effects
  • 2.2. Designing for thermoelectric applications
  • 2.3. Thin film thermoelectric generators
  • 2.4. Material choices
  • 2.5. Organic thermoelectrics - PEDOT:PSS, not just a transparent conductor
  • 2.6. Bi-functional thermoelectric generator/pre-cooler: DC power from aircraft bleed air

3. OTHER PROCESSING TECHNIQUES

  • 3.1. Manufacturing of flexible thermoelectric generators
  • 3.2. AIST technology details

4. APPLICATIONS

  • 4.1. Automotive applications
    • 4.1.1. BMW
    • 4.1.2. Ford
    • 4.1.3. Volkswagen
    • 4.1.4. Challenges of Thermoelectrics for Vehicles
  • 4.2. Wireless sensing
    • 4.2.1. TE-qNODE
    • 4.2.2. TE-CORE
    • 4.2.3. EverGen PowerStrap
    • 4.2.4. WiTemp
    • 4.2.5. GE- Logimesh
  • 4.3. Aerospace
  • 4.4. Wearable/implantable thermoelectrics
  • 4.5. Building and home automation
  • 4.6. Other applications
    • 4.6.1. Micropelt-MSX
    • 4.6.2. PowerPot¢â

5. INTERVIEWS - COMMERCIALIZATION CONSIDERATIONS

  • 5.1. Ford
  • 5.2. Microsemi
  • 5.3. MSX Micropelt
  • 5.4. Rolls Royce
  • 5.5. TRW
  • 5.6. Volvo

6. MARKET FORECASTS

7. COMPANY PROFILES

  • 7.1. EVERREDtronics
  • 7.2. Ferrotec
  • 7.3. Gentherm
  • 7.4. Global Thermoelectric
  • 7.5. greenTEG
  • 7.6. GMZ Energy
  • 7.7. Hi Z
  • 7.8. KELK Ltd.
  • 7.9. Laird / Nextreme
  • 7.10. Marlow
  • 7.11. mc10
  • 7.12. Micropelt
  • 7.13. National Institute of Advanced Industrial Science & Technology (AIST)
  • 7.14. O-Flexx
  • 7.15. Perpetua
  • 7.16. RGS Development
  • 7.17. Romny Scientific
  • 7.18. Tellurex
  • 7.19. Thermolife Energy Corporation
  • 7.20. Yamaha

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Market forecasts for thermoelectric energy harvesters in different applications 2014-2024 (US$ million)
  • 6.1. Market forecasts for thermoelectric energy harvesters in different applications 2014-2024 (US$ million)

FIGURES

  • 1.1. Market forecasts for thermoelectric energy harvesters in different applications 2014-2024 (US$ million)
  • 1.2. Global Thermoelectric implementations
  • 2.1. Representation of the Peltier (left) and the Seebeck (right) effect
  • 2.2. A general overview of the sequential manufacturing steps required in the construction of thermoelectric generators
  • 2.3. Generic schematic of thermoelectric energy harvesting system
  • 2.4. Figure of merit for some thermoelectric material systems
  • 2.5. Orientation map from a skutterudite sample
  • 2.6. Power Density and Sensitivity plotted for a variety of TEGs at a ¥ÄT=30K
  • 2.7. % of Carnot efficiency for thermogenerators for different material systems
  • 2.8. Bulk Bi2Te3 sample consolidated from nanostructured powders that were formed by gas atomization, then hot pressed together
  • 2.9. Calculated figure-of-merit ZT for doped PbSe at various hole concentrations (main plot) and electron concentrations (inset)
  • 2.10. Experimental ZT values for PbSe
  • 2.11. The skutterudite crystal lattice structure
  • 2.12. A sample of skutterudite ore
  • 2.13. Polyhedral morphology of a ZrNiSn single crystal
  • 2.14. Atomic force micrograph of nanowire-polymer composite films of varying composition, and schematic of highly conductive interfacial phase
  • 3.1. A typical thermoelectric element
  • 3.2. Schematic of the inside of a typical thermoelectric element
  • 3.3. Sputtered thermoelectric material on wafer substrate
  • 3.4. Detail of thermocouple legs. (3.3mmx3.3mm area containing 540 thermocouples, 140mV/K)
  • 3.5. Electrochemically deposited Bi2Te3 legs with high aspect ratios
  • 3.6. The fabrication method of the CNT-polymer composite material (top), and an electron microscope image of its surface (lower)
  • 3.7. A flexible thermoelectric conversion film fabricated by using a printing process (left) and its electrical power-generation ability (right). A temperature difference created by placing a hand on the film installed on the 10 ¡ÆC pla
  • 4.1. Energy losses in a vehicle
  • 4.2. Opportunities to harvest waste energy
  • 4.3. Ford Fusion, BMW X6 and Chevrolet Suburban. US Department of Energy thermoelectric generator programs
  • 4.4. Pictures from the BMW thermogenerator developments, as part of EfficientDynamics
  • 4.5. Ford's anticipate 500W power output from their thermogenerator
  • 4.6. The complete TEG designed by Amerigon
  • 4.7. High and medium temperature TE engines
  • 4.8. Modelled power generation vs. exhaust mass flow for different cold inlet temperatures
  • 4.9. FTP-75 Drive cycle simulation results: Exhaust gas flow, exhaust gas temperature and resulting power generation
  • 4.10. The Micropelt-Schneider TE-qNODE
  • 4.11. The TE-qNODE in operation, attached to busbars
  • 4.12. The TE Core from Micropelt
  • 4.13. The EverGen PowerStrap from Marlow
  • 4.14. EverGen PowerStrap performance graphs
  • 4.15. EverGen exchangers can vary in sizes from a few cubic inches to several cubic feet. Pictured also, a schematic of a TEG exchanger's main components
  • 4.16. ABB's WiTemp wireless temperature transmitter
  • 4.17. GE's wireless sensor with Perpetua's Powerpuck
  • 4.18. Logimesh's Logimote, developed in collaboration with Marlow
  • 4.19. A drawing of a general purpose heat source (GPHS)-RTG used for Galileo, Ulysses, Cassini-Huygens and New Horizons space probes
  • 4.20. One of the Cassini spacecraft's three RTGs, photographed before installation
  • 4.21. Labelled cutaway view of the Multi-Mission Radioisotope Thermoelectric Generator
  • 4.22. Nuclear-powered pace maker, Source: Los Alamos National Laboratory
  • 4.23. Power emanating from various parts of the human body
  • 4.24. The en:key products: A thermoelectric powered radiator valve and solar powered central control unit for home automation applications
  • 4.25. The sentinel, a window positioning sensor developed by the Fraunhofer institute in Germany
  • 4.26. Thermoelectric Energy harvesting on hot water/gas pipes
  • 4.27. MSX-Micropelt cooking sensor
  • 4.28. PowerPot with basic USB charger se
  • 4.29. Backside of the PowerPot¢â, showing the flame resistant cable and connector
  • 6.1. Market forecasts for WSN 2014-2024
  • 6.2. Market forecasts for military & aerospace 2014-2024
  • 6.3. Market forecasts for other industrial 2014-2024
  • 6.4. Market forecasts for healthcare 2014-2024
  • 6.5. Market forecasts for other consumer 2014-2024
  • 6.6. Market forecasts for other non-consumer 2014-2024
  • 6.7. Total market forecasts for thermoelectric energy harvesters in different applications 2014-2024
  • 7.1. The three main parts of a Global Thermoelectric solid state generator: a burner, the thermopile and cooling fins
  • 7.2. 5000W for SCADA communications and cathodic protection of a gas pipeline - India
  • 7.3. Small, flexible thermoelectric generators from greenTEG
  • 7.4. Detail of fabricated gTEG¢â
  • 7.5. A greenTEG micro thermoelectric generator
  • 7.6. Thermoelectric generation module to be commercialized by KELK
  • 7.7. Nextreme's evaluation kit
  • 7.8. TheaeTEG¢â HV37 Power Generator
  • 7.9. A stretchable array of inorganic LEDs
  • 7.10. Micropelt's thermal energy harvester integrated with a wirelessHART sensor in action
  • 7.11. Thermoelectric conversion film devices fabricated by printing
  • 7.12. O-Flexx Power StrapTM
  • 7.13. O-Flexx Energy Harvester H30P
  • 7.14. Schematic of Perpetua's Flexible Thermoelectric Film¢â technology
  • 7.15. n-type Mg2SixSny produced by Romny give ZT of ~ 0.83 at 300 ¡ÆC
  • 7.16. Mg-Silicide ingots, hot pressed by Romny Scientific
  • 7.17. Comparison of stability during cycling: Cycle type: heating up to 350¡ÆC within 30 minutes, cooling down to ambient within 90 minutes
  • 7.18. Examples of exhaust and body heat at Yamaha



ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.