ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ÀÚµ¿Â÷ > Àü±âÀÚµ¿Â÷
Energy Independent Electric Vehicle Technology Roadmap 2016-2036
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2016-04
ºÐ·® 185 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents


1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Types of EIV and related vehicles
1.2. EIV operational choices
1.3. Key EIV technologies
1.4. Technologies of EIVs past, present and concept including vehicles likely to be further developed into being EIVs
1.5. EIV Technology roadmap 2016-2026
2. INTRODUCTION
2.1. Energy Independent Vehicles: energy, definition and function
2.2. Definition and primary features
2.3. What is energy harvesting?
2.4. Characteristics of the High Power Energy Harvesting essential to EIVs
2.5. Hype curves
2.6. Hype curve for EH technology 2016
2.7. Hype curve for EH technology 2026
2.8. Good features and challenges of the four most important EH technologies
2.9. High power energy harvesting
2.10. Efficiency achieved and theoretical potential for improving efficiency
2.11. Energy harvesting technologies with examples of good features in blue
2.12. More EH in a vehicle
2.13. Intermittent power generated
2.14. Comparison of pn junction and photoelectrochemical PV
2.15. Priorities for high power EH in EIVs, for primary traction power, with examples
2.16. Main PV options beyond silicon
2.17. Chasing affordable, ultra-lightweight conformal PV for EIVs
2.18. Thin, lightweight Fresnel lens concentrator
2.19. PV cost and efficiency trends
3. NEW FORMATS ARE VERY IMPORTANT FOR EIVS
3.1. New formats are very important for EIVs
3.2. Colloidal Quantum Dot spray on solar?
3.3. But mostly still silicon today
3.4. Overlap between mechanically and electrically energy independent vehicles
3.5. Examples of e-fiber projects aimed at use in vehicles
3.6. European Powerweave project: airships & sails
3.7. Hybrid piezo photovoltaic material
3.8. Triboelectricity is being developed for car tires in 2015
3.9. EIVs - more than adding something to a vehicle
3.10. EH system
3.11. Autonomous operation + EIV: a synergistic ecosystem
3.12. Korea - dynamic charging from road
3.13. Dynamic charging will use very low cost electricity
4. ENERGY HARVESTING AS SYSTEMS IN EIVS
4.1. EH system
4.2. Qualcomm vision
4.3. Autonomous operation + EIKV
4.4. Dynamic wireless charging
4.5. Korea - dynamic charging from road
4.6. Dynamic charging will use very low cost electricity
4.7. Energy harvesting as systems in EIVs
4.8. EH system
4.9. Internal vehicle efficiency improvement by EH - progress towards EIVs
5. EXTREME POWERTRAIN EFFICIENCY
5.1. Extreme powertrain efficiency
6. EXTREME LIGHTWEIGHTING
6.1. Extreme lightweighting
6.2. Lightweighting materials
6.3. De-icing heater as part of an aircraft wing
6.4. Use of aluminium and plastics to halve microcar weight
6.5. Load-bearing and smart skin electrics/electronics
6.6. Structural electronics (referring to electrics and electronics) is the end game for most EIV components
6.7. Lightweighting of electronic components
6.8. Tesla S chassis largely made of aluminium
7. NEXT GENERATION ENERGY STORAGE
7.1. Next generation energy storage
7.2. Energy storage technologies in comparison
7.3. Next generation batteries: summary
7.4. Why post lithium-ion batteries now?
7.5. Li-ion performance will plateau even with new materials
7.6. US DoE projections of traction battery cost
7.7. What are post Li-ion battery technology candidates?
7.8. Challenges for Post Lithium-ion Batteries
7.9. Mainstream market requirements: Performance and price
7.10. Automotive Lithium Battery Price evolution at pack level
7.11. Battery price trends per sector
7.12. Technology maturity roadmap per market segment
7.13. Technologies of Post Lithium-ion Batteries
7.14. Benchmarking of theoretical battery performance
7.15. Benchmarking of practical battery performance 2015
7.16. Why Silicon anode batteries?
7.17. Silicon anode
7.18. Motivation - why Lithium Sulfur batteries?
7.19. Challenges Lithium Sulfur battery
7.20. Why solid state Li-ion or other batteries?
7.21. Solid state batteries?
7.22. Lithium capacitor
7.23. Supercapacitors
7.24. Supercapacitors and hybrid supercapacitor
7.25. Nomenclature
7.26. Lithium capacitors technology performance of products available today
7.27. Sodium ion batteries
7.28. Summary of technology challenges for future traction batteries
7.29. EIV technology spawns advances for all vehicles
7.30. Energy Independent Vehicles EIV and precursors in action
8. EIVS AND PRECURSORS ON LAND, ON-ROAD
8.1. Stella Lux passenger car Netherlands
8.2. Sunswift eVe passenger car Australia
8.3. Immortus passenger car Australia
8.4. POLYMODEL micro EV Italy
8.5. Venturi Eclectic passenger car Italy
8.6. Dalian tourist bus China
8.7. NFH-H microbus China
8.8. Kayoola large bus Uganda
8.9. Cargo Trike micro EV UK
8.10. Sunnyclist Greece
8.11. Funding for development of lightweight solar modules on vehicles
9. SOLAR RACERS
9.1. World Solar Challenge
9.2. Other solar races
9.3. Solar racer technologies - non solar parts
9.4. Improvement of solar racer performance parameters
9.5. Solar racer technologies - photovoltaics
9.6. Power of One solar racer car Canada
9.7. Bethany solar racer UK
9.8. CUER Resolution solar racer UK
9.9. EVA solar racer UK
9.10. Nuna 7 solar racer Netherlands
9.11. Nuna 8 solar racer Netherlands
9.12. Drifter 2.0 solar racer USA
10. EIVS AND PRECURSORS ON LAND, OFF-ROAD
10.1. Vinerobot micro EV Europe
11. EIVS AND PRECURSORS ON WATER SEAGOING
11.1. REPSAIL boat Poland, Turkey etc
11.2. MARS boat UK
11.3. RENSEA boat Iceland, Norway, Sweden
11.4. Turanor boat Germany
11.5. Vaka Moana boat Netherlands
11.6. Sun21 boat Switzerland
11.7. Seaswarm boat USA
11.8. SOELCAT boat Netherlands
11.9. Inerjy EcoVert
12. EIVS AND PRECURSORS SEAGOING UNDERWATER
12.1. Seaglider AUV boat USA
12.2. Cyro AUV jellyfish USA
13. EIVS AND PRECURSORS INLAND WATER
13.1. Solar racing boats Netherlands
13.2. Loon boat Canada
13.3. EIV or similar - boat Alster Sun Netherlands
14. EIVS AND PRECURSORS AIRBORNE INFLATABLE
14.1. Nephelios airship France
14.2. Northrop Grumman airship USA
14.3. Mitre DARPA airship USA
14.4. HALE-D airship USA
14.5. Dirisolar airship France
14.6. Turtle airship USA
14.7. Solar Ship inflatable fixed wing aircraft Canada
14.8. Atlantik Solar 2 UAV Switzerland
14.9. Zephyr 7 UAV UK, Germany
14.10. Titan Aerospace UAV USA
14.11. Solar Eagle UAV USA
14.12. FCL UAV USA, UK
14.13. Silent Falcon UAV USA
14.14. Helios UAV USA
14.15. Sunstar USA
14.16. Sunseeker Duo USA
14.17. Solar Impulse Switzerland
15. EIV TECHNOLOGY SPAWNS ADVANCES FOR ALL VEHICLES
15.1. Energy independent vehicles: here come the benefits


ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.