ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ¹æÀ§/Ç×°ø/¿ìÁÖ
Electric Drones: Unmanned Aerial Vehicles (UAVs) 2015-2025
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2016-07-29
ºÐ·® 168 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Types
  • 1.3. Global electric UAV market, number, unit value, market value 2015-2025
  • 1.4. Electric vs non-electric UAVs 2015-2025
  • 1.5. Benefits and issues
  • 1.6. Applications 2014-5
  • 1.7. Professional benefits
    • 1.7.1. Most successful pure electric UAV
    • 1.7.2. All parts subject to disruptive change
  • 1.8. Agricultural UAV statistics 2015-2025
  • 1.9. Border surveillance
  • 1.10. Competition for drones
  • 1.11. Autonomy and technology
  • 1.12. Benefits and paybacks
  • 1.13. Effect of 2015 oil price collapse on electric vehicles
  • 1.14. News in 2016
    • 1.14.1. RoboBees can land and stick to surfaces
    • 1.14.2. Drone docking patent from Amazon - June 2016
    • 1.14.3. Flying Whales and Skeleton Technologies develop large capacity airships - July 2016

2. INTRODUCTION

  • 2.1. Definitions and scope
  • 2.2. Needs
  • 2.3. Impediments and timelines
  • 2.4. Benchmarking best practice with land and seagoing EVs
  • 2.5. Specifications, challenges and functions of small drones
    • 2.5.1. Challenges
    • 2.5.2. Quadcopters
    • 2.5.3. Cameras in drones

3. TECHNOLOGIES

  • 3.1. Powertrains
    • 3.1.1. Pure electric vs hybrid
    • 3.1.2. Convergence
    • 3.1.3. Hybrids vs pure electric UAVs
    • 3.1.4. Range extenders
    • 3.1.5. Superconducting and alternative motor with range extender
    • 3.1.6. Walkera hybrid drone with methanol range extender
  • 3.2. Electric traction motors
    • 3.2.1. Ultra Lightweight motors for electric drones and airliners
    • 3.2.2. 3D printing robot flies and their motors?
    • 3.2.3. Multicopter motors and controls
  • 3.3. Shape, location, number, type of motors
  • 3.4. Traction motor technology preference
  • 3.5. Three ways that traction motors makers race to escape rare earths
    • 3.5.1. Synchronous motors with new magnets
    • 3.5.2. More to come
  • 3.6. Implications for electric aircraft
  • 3.7. Batteries
    • 3.7.1. Construction of a battery
    • 3.7.2. Many shapes of battery
    • 3.7.3. Trend to laminar and conformal traction batteries
    • 3.7.4. Aurora laminar batteries in aircraft.
    • 3.7.5. Choices of chemistry and assembly
    • 3.7.6. Lithium winners today and soon
    • 3.7.7. Lithium polymer electrolyte now important
    • 3.7.8. Winning chemistry
    • 3.7.9. Winning lithium traction battery manufacturers
    • 3.7.10. Making lithium batteries safe
    • 3.7.11. Boeing Dreamliner: Implications for electric aircraft
  • 3.8. Fuel cells
    • 3.8.1. Slow progress with fuel cells
    • 3.8.2. Aerospace and aviation applications
    • 3.8.3. AeroVironment USA
    • 3.8.4. Boeing Europe
    • 3.8.5. ENFICA Italy and UK
    • 3.8.6. Pipistrel Slovenia
    • 3.8.7. University of Stuttgart Germany
  • 3.9. Energy harvesting
    • 3.9.1. Multiple forms of energy to be managed
    • 3.9.2. Photovoltaics
    • 3.9.3. École Polytechnique Fédérale de Lausanne Switzerland
    • 3.9.4. ETH Zurich Switzerland
    • 3.9.5. Green Pioneer China
    • 3.9.6. Gossamer Penguin USA
    • 3.9.7. Néphélios France
    • 3.9.8. Silent Falcon¢â UAS Technologies
    • 3.9.9. Soaring China
    • 3.9.10. Solair Germany
    • 3.9.11. Sunseeker USA
    • 3.9.12. University of Applied Sciences Schwäbisch Gmünd Germany
    • 3.9.13. US Air Force
    • 3.9.14. Northrop Grumman USA
  • 3.10. Other energy harvesting
  • 3.11. Regenerative soaring
  • 3.12. Biomimetic aircraft snatch and export power?
    • 3.12.1. IFO-Energy Unlimited in Hungary
    • 3.12.2. Copy the birds
    • 3.12.3. How to capture the wind?
    • 3.12.4. Valid physics
    • 3.12.5. How to maintain altitude?
    • 3.12.6. Storage of energy is more challenging
  • 3.13. Power beaming
    • 3.14. Hybrid powertrains in action
    • 3.14.1. Multifuel and monoblock engines
    • 3.14.2. Beyond Aviation: formerly Bye Energy USA, France
  • 3.15. Hybrid aircraft projects
    • 3.15.1. EADS Germany
    • 3.15.2. Flight Design Germany
    • 3.15.3. GSE USA
    • 3.15.4. Krossblade USA
    • 3.15.5. Ricardo UK
    • 3.15.6. Turtle Airships Spain
    • 3.15.7. University of Bristol UK
    • 3.15.8. University of Colorado USA
    • 3.16. Rethinking the structural design

4. SMALL UNMANNED AERIAL VEHICLES AND OTHER EXOTICA

  • 4.1. SUAV
    • 4.1.1. Background
    • 4.1.1. easyJet becomes a quadcopter user in 2015
    • 4.1.2. UAR Postal, DJI Innovations, Estes, ISQ, Scan Eagle 2014-15
    • 4.1.3. Mini helicopters tracking weeds
    • 4.1.4. Drones to better understand how diseases spread
    • 4.1.5. Drones used to monitor behaviour of killer whales
    • 4.1.6. NMSU tests unmanned aircraft over active mine
    • 4.1.7. Multicopter RFID readers
    • 4.1.8. AeroVironment small UAVs
    • 4.1.9. AirMule
    • 4.1.10. AirShip Technologies Group
    • 4.1.11. Hirobo Japan
    • 4.1.12. Rotomotion
    • 4.1.13. Robot insects
    • 4.1.14. Robot locusts
    • 4.1.15. Reconnaissance bugs and bats
    • 4.1.16. Nano air vehicle
    • 4.1.17. Lite Machines Corporation USA
    • 4.1.18. NRL UAV from a submerged submarine
    • 4.1.19. Skyfront Tailwind
    • 4.1.20. Sony Japan
    • 4.1.21. Technical University of Turin
    • 4.1.22. Vienna University of Technology
  • 4.2. Large electrical UAVs
    • 4.2.1. VESPAS Europe
    • 4.2.2. AeroVironment Helios and Global Observer
    • 4.2.3. AtlantikSolar unmanned aerial vehicle endurance record
    • 4.2.4. Aurora Flight Sciences USA
    • 4.2.5. Lockheed Martin USA
    • 4.2.6. Airbus HAPS solar plane
    • 4.2.7. Boeing and Versa USA, QinetiQ & Newcastle University UK
    • 4.2.8. Japanese solar sail to Venus
    • 4.2.9. NASA Aeronautics' Unmanned Aircraft Systems Integration

IDTECHEX RESEARCH REPORTS AND CONSULTING

TABLES

  • 1.1. Types of UAV. Those mainly remote controlled in green, mainly autonomous in red
  • 1.2. Global electric UAV market, number million 2015-2025. Those categories with over 90% of the UAVs having cameras are shown in blue.
  • 1.3. Global electric UAV market $ ex-factory unit value 2015-2025
  • 1.4. Global electric UAV market value $ billion 2015-2025 with assumptions
  • 1.5. Value of global electric, non-electric and total UAV market 2015-2025
  • 1.6. Examples of civil drone applications 2014-5
  • 2.1. Some DJI Phantom 2 quadcopter specifications
  • 3.1. Electric vehicle drivetrain options, with those most adopted and prioritised for the future shown shaded
  • 3.2. Summary of preferences of traction motor technology for vehicles
  • 3.3. Advantages vs disadvantages of brushed vs brushless vehicle traction motors for today's vehicles
  • 3.4. Most likely winners and losers in the next decade
  • 3.5. Supplier numbers listed by continent
  • 3.6. Traction motor supplier numbers listed by country in alphabetical order
  • 3.7. Applications targeted by our sample of motor suppliers vs market split, listed in order of 2012 market size
  • 3.8. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
  • 3.9. Suppliers offering brushed, brushless and both types of synchronous motors, where identified
  • 3.10. Vehicles with asynchronous, synchronous or both options by category in number and percentage of category, listed in order of declining asynchronous percentage
  • 3.11. 212 electric vehicle models analysed by category for % asynchronous, power and torque of their electric traction motors and where intensive or rough use is most typically encountered. The rated power and traction data are enhanced
  • 3.12. Other motor features declared by vehicle manufacturers
  • 3.13. What is on the way in or out with traction batteries
  • 3.14. 142 manufacturers and putative manufacturers of lithium-based rechargeable batteries with country, cathode and anode chemistry, electrolyte morphology, case type, applicational priorities and customer relationships, if any, in sel
  • 3.15. Multiple forms of energy management in aviation
  • 3.16. Choices of flexible photovoltaics
  • 4.1. Data for RQ-11A version of AeroVironment Raven

FIGURES

  • 1.1. Cost reduction of components of small drones to 2015
  • 1.2. Global electric UAV market value $ billion 2015-2025 with assumptions
  • 1.3. Value of global electric, non-electric and total UAV market 2015-2025
  • 1.4. US military UAV procurement including systems 1988-2013
  • 1.5. Northrup Grumman X47-B designed to take off from and land on aircraft carriers. Not currently a candidate for electric power train
  • 1.6. Cost of Traditional alternatives to UAVs
  • 1.7. Some impacts of UAVs
  • 1.8. AeroVironment Raven UAV
  • 1.9. Collaborative UAV missions
  • 1.10. Registered number of unmanned agricultural helicopters in Japan and sprayed area 1990-2011
  • 1.11. Forecast for UAVs in border security $ million 2016, 2021
  • 1.12. The envisioned final version of the VineRobot
  • 1.13. Hype curve for autonomous vehicles
  • 1.14. RoboBees - the team found inspiration in nature and simple science
  • 1.15. Amazon drone docking station
  • 1.16. Flying Whales' 60-ton Large Capacity Airship, or LCA60T
  • 2.1. Gannet diving and planned Cormorant military spy plane/submarine
  • 2.2. DJI Phantom 2 Quadcopter with Zenmuse H3-3D
  • 2.3. Tamron lens systems suitable for drones.
  • 3.1. Hybrid technology evolving as traction batteries improve
  • 3.2. The convergence of hybrid and pure electric technologies for cars and aircraft
  • 3.3. Hybrid electric aircraft experimental configuration using fuel cell
  • 3.4. Large format quadcopter
  • 3.5. Turnigy quadcopter motor
  • 3.6. Small quadcopter
  • 3.7. Nanoflie
  • 3.8. Supplier numbers listed by continent
  • 3.9. Traction motor supplier numbers listed by country
  • 3.10. Suppliers of vehicle traction motors - split between number offering asynchronous, synchronous and both, where identified
  • 3.11. Multiple electric motors on a NASA solar powered, unmanned aircraft for the upper atmosphere
  • 3.12. The four Cri Cri electric motors
  • 3.13. Construction of a battery cell
  • 3.14. Approximate percentage of manufacturers offering traction batteries with less cobalt vs those offering ones with no cobalt vs those offering both. We also show the number of suppliers that offer lithium iron phosphate versions.
  • 3.15. The UPS 747 that crashed in the UAE with a shipment of lithium batteries
  • 3.16. Burning Dreamliner pictures
  • 3.17. Principle of PEM fuel cell
  • 3.18. PEM fuel cell in long endurance upper atmosphere unmanned aircraft
  • 3.19. Pilot plus payload vs range for fuel cell light aircraft and alternatives
  • 3.20. Total weight vs flight time for PEM fuel cell planes
  • 3.21. Takeoff gross weight breakdowns. Left: Conventional reciprocating-engine-powered airplane. Right: Fuel-cell-powered airplane.
  • 3.22. Boeing fuel cell powered FCD aircraft
  • 3.23. Hydrogenius
  • 3.24. Experience curve for new photovoltaic technologies
  • 3.25. Solar Impulse
  • 3.26. Solar impulse construction
  • 3.27. ETH Zurich solar powered unmanned aircraft for civil use
  • 3.28. Green Pioneer I
  • 3.29. Gossamer Penguin
  • 3.30. Néphélios planned solar airship
  • 3.31. Silent Falcon¢â solar electric unmanned aerial system
  • 3.32. Test Flight of Soaring in 1994
  • 3.33. Design of Soaring
  • 3.34. Bubble Plane
  • 3.35. Solar and fuel cell powered airship concept
  • 3.36. Northrop Grumman hybrid airship
  • 3.37. Electraflyer Trike
  • 3.38. Electraflyer uncowled
  • 3.39. LaserMotive objectives illustrated
  • 3.40. The diesel-electric hybrid propulsion helicopter concept is one of the eco-friendly solutions being evaluated by EADS for rotary-wing aircraft
  • 3.41. GSE mini diesel driving a propeller
  • 3.42. Greg Stevenson (left) and Gene Sheehan, Fueling Team GFC contender, with GSE Engines.
  • 3.43. Block diagram of the Frank/Stevenson parallel hybrid system
  • 3.44. Krossblade SkyCruiser concept
  • 3.45. Ricardo Wolverine engine for hybrid UAVs
  • 3.46. Turtle Airship landed on water in concept drawing
  • 3.47. Glassock hybrid set up for dynamometer testing
  • 3.48. University of Colorado hybrid aero engine
  • 3.49. US Airforce interest in smart sensing skin for aircraft and aircrew
  • 4.1. Examples of SUAV rechargeable lithium batteries. Top: Flight Power "EVO 20" lithium polymer battery. Bottom: Sion Power lithium sulphur
  • 4.2. Aeroplanes but not as we know them - SPI electrical SUAV
  • 4.3. Pinc Air multicopter as RFID reader
  • 4.4. AeroVironment Raven and Wasp
  • 4.5. Aqua Puma
  • 4.6. The Urban Aeronautics AirMule
  • 4.7. V2 Unmanned Aerial Vehicle (UAV)
  • 4.8. Rotomotion VTOL electrical UAV incorporating video camera, telemetry, auto takeoff and landing
  • 4.9. Examples of robot insects
  • 4.10. UAS nano swarm vignette
  • 4.11. COM-BAT concept
  • 4.12. Military hummingbird
  • 4.13. Lite Machines Voyeur UAV
  • 4.14. Voyeur in action
  • 4.15. Skyfront Tailwind drone
  • 4.16. Sony Autonomous Unmanned Aerial Vehicle
  • 4.17. The Quadcopter, built at TU Vienna
  • 4.18. The Quadcopter-Team: Annette Mossel, Christoph Kaltenriner, Hannes Kaufmann, Michael Leichtfried (left to right.)
  • 4.19. AeroVironment Helios
  • 4.20. AtlantikSolar unmanned aerial vehicle endurance record
  • 4.21. Odysseus self assembling unmanned electric UAV
  • 4.22. Sunlight Eagle
  • 4.23. Lockheed Martin morphing electric UAV
  • 4.24. Lockheed flying cameras based on tree seeds
  • 4.25. Integrated Sensor Is Structure (ISIS) smart airship
  • 4.26. Lockheed Martin solar airship and P791 concepts
  • 4.27. SolarEagle
  • 4.28. IKAROS
  • 4.29. GL-10 in horizontal flight

ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.