ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ÀÚµ¿Â÷
Autonomous Vehicles Land, Water, Air 2017-2037
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2016-10-26
ºÐ·® 151 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Autonomy of navigation, task and power
  • 1.2. Levels of autonomy
  • 1.3. Why have autonomy?
    • 1.3.1. Aerospace
    • 1.3.2. Agriculture
    • 1.3.3. Car - taxi - bus
    • 1.3.4. Industrial shipping
    • 1.3.5. Search and rescue
    • 1.3.6. Underwater
  • 1.4. Many autonomous car trials
    • 1.4.1. First-ever public trial of a robo-taxi service
  • 1.5. Autonomy hits sales of cars but not of other vehicles
    • 1.5.1. Increasing hostility to private cars in cities whether autonomous or not
  • 1.6. Convergence of technologies and new challenges
    • 1.6.1. Overview
    • 1.6.2. Legal issues BMW view
    • 1.6.3. Operational challenges
    • 1.6.4. Technical challenges
    • 1.6.5. Ethical challenges
    • 1.6.6. Insurance challenges
  • 1.7. Hype curve for autonomy today
  • 1.8. Strength of autonomy purchase propositions
  • 1.9. Terminology
  • 1.10. Autonomy of navigation, task and power: examples
    • 1.10.1. Example: Vinerobot micro EV Europe
    • 1.10.2. MARS boat UK
    • 1.10.3. Seaglider AUV boat USA
  • 1.11. Technologies of EIVs
    • 1.11.1. EIV technology past, present and concept on land
    • 1.11.2. EIVs technology past, present and concept on and under water
    • 1.11.3. EIV technology past, present and concept in the air
    • 1.11.4. Space exploration
  • 1.12. Technology of autonomy
    • 1.12.1. Land, water, air
    • 1.12.2. Typical toolkit for autonomy of on-road vehicles
  • 1.13. The current players in on-road autonomy
  • 1.14. Market forecasts
    • 1.14.1. IDTechEx EV and 48V mild hybrid global forecasts number K 2017-2027
    • 1.14.2. IDTechEx EV and 48V mild hybrid global forecasts $ billion 2017-2027
    • 1.14.3. EV Market Value US$ Billion 2017
    • 1.14.4. EV Market Value US$ Billion 2027
    • 1.14.5. On-road Level 3-5 autonomous vehicles forecasts
    • 1.14.6. Relative importance of powertrain and autonomy hardware markets 2017-2037
    • 1.14.7. Software in on-road applications 2014-2030
    • 1.14.8. AMoD Demand for autonomous cars 2016-2035
    • 1.14.9. US on-road addressable market
    • 1.14.10. Ten-year market forecasts for all agricultural robots and drones segmented by type and/or function
    • 1.14.11. Autonomous Underwater Vehicle AUV market 2016-2022
  • 1.15. Autonomy roadmap
    • 1.15.1. Autonomy roadmap 2018-2020
    • 1.15.2. Autonomy roadmap 2023-2040
    • 1.15.3. Sensor and allied technology roadmap
    • 1.15.4. EIV technology roadmap 2017-2036

2. INTRODUCTION

  • 2.1. Definition and building blocks
  • 2.2. Progress towards full autonomy
  • 2.2.1. Simplifying the environment
  • 2.3. Connectivity and automation reduce fuel consumption
  • 2.4. Level 5 autonomous vehicles
  • 2.5. Autonomous vehicles are best when they are electric
  • 2.6. Benefits of autonomy

3. SOME IMPORTANT APPLICATIONAL SECTORS

  • 3.1. Agricultural Robots and Drones
    • 3.1.1. Ultra precision farming
    • 3.1.2. Transition to swarms of slow, cheap, unmanned agricultural robots
    • 3.1.3. Market and technology readiness by agricultural activity
  • 3.2. Autonomous ships
  • 3.3. Autonomous Underwater Vehicles AUV
    • 3.3.1. Why AUVs are necessary
    • 3.3.2. Features
    • 3.3.3. Examples: Seastick
    • 3.3.4. Urashima AUV Japan

4. LEVEL 5 AUTONOMOUS VEHICLE SYSTEM TECHNOLOGY

  • 4.1. Degree of difficulty
  • 4.2. Autonomous vehicles in warehousing and logistics
  • 4.3. Autonomy technology overview: land, water, air
    • 4.3.1. Examples of technologies
    • 4.3.2. Five basic building blocks.
  • 4.4. Hardware toolkit on land

5. SOFTWARE AND PROCESSOR TECHNOLOGY FOR AUTONOMY

  • 5.1. Mission centric advances
    • 5.1.1. Airware
    • 5.1.2. Skydio
    • 5.1.3. Gateway
  • 5.2. Autonomous vehicle platform: functional diagram for sensing and control
  • 5.3. Processing for fully autonomous vehicles
    • 5.3.1. Overview
    • 5.3.2. Capabilities/limitations
    • 5.3.3. Beyond microcontrollers
    • 5.3.4. System on a Chip (SoC)
    • 5.3.5. Sensor fusion
    • 5.3.6. MCU architectures
    • 5.3.7. Consolidation on the ARM architecture
    • 5.3.8. Open source hardware
    • 5.3.9. Moore's Law for processing
    • 5.3.10. Prices equilibrating
    • 5.3.11. Trends
    • 5.3.12. SBC market

6. LIDAR FOR AUTONOMOUS VEHICLES

  • 6.1. LIDAR for autonomous vehicles

7. AUTONOMOUS ENERGY INDEPENDENT VEHICLES EIV; AEROSPACE, LAND, WATER

  • 7.1. End game is energy independent pure electric not dynamic charging
  • 7.2. Electric vehicle powertrain evolution: typical figures expected for cars
  • 7.3. Key enabling technologies by powertrain
  • 7.4. Com-BAT surveillance bat
  • 7.5. Solar Ship EIV helium inflatable fixed wing aircraft Canada autonomous, sun alone
  • 7.6. Northrop Grumman surveillance airship up for 10 years
  • 7.7. Mitre DARPA airship USA
  • 7.8. Titan Aerospace UAV USA
  • 7.9. Solar Eagle UAV USA
  • 7.10. Self assembling autonomous unmanned EIV aircraft Aurora Flight Sciences

ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.