ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û > Â÷¼¼´ëÁ¤º¸±â±â
AR & VR Smartglasses and Functional Contact Lenses 2016-2026
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2016-12-22
ºÐ·® 186 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

2. CONTACT LENSES

  • 2.1. Contact lens materials
  • 2.2. Contact lenses and disposability
  • 2.3. The market for contact lenses

3. SMART CONTACT LENSES

  • 3.1. The Google-Novartis collaboration
  • 3.2. Target Applications - startups & research activities
    • 3.2.1. Medical
    • 3.2.2. Infotainment

4. CHALLENGES WITH SMART LENSES

  • 4.1. The blood glucose measurement challenge
  • 4.2. On board powering schemes - Remote power
    • 4.2.1. Primary or rechargeable cells?
    • 4.2.2. Energy harvesting
  • 4.3. Miniaturization
  • 4.4. Transparent encapsulation of electronic components and manufacturing considerations
  • 4.5. Cost structures
  • 4.6. FDA approval

5. SMART GLASSES

  • 5.1. Google Glass
    • 5.1.1. Google Glass Explorer features
    • 5.1.2. Google Glass Enterprise
    • 5.1.3. Luxottica partnership
  • 5.2. Vuzix M100
  • 5.3. Epson Moverio BT-200 & BT-2000
  • 5.4. Recon Jet - Snow2
  • 5.5. Kopin Solos
  • 5.6. Optinvent ORA 1 - ORA X
  • 5.7. Meta 1 - Meta Pro
  • 5.8. ODG R-7
  • 5.9. Microsoft Hololens
  • 5.10. Sony SmartEyeGlass
  • 5.11. Magic Leap
  • 5.12. GiveVision
  • 5.13. Others
  • 5.14. What are "enterprise" applications all about?

6. AR VS. VR

  • 6.1. Oculus Rift
  • 6.2. Sony PlayStation VR
  • 6.3. Samsung
  • 6.4. Zeiss - Avegant
  • 6.5. Merge VR - HTC VR

7. MICRODISPLAY TECHNOLOGIES

  • 7.1. LCoS microdisplay
    • 7.1.1. LCoS microdisplay structure
    • 7.1.2. Optical principles of LCoS microdisplays
    • 7.1.3. Generating color in a single panel configuration - Time Domain Imaging (TDI¢â) - ForthDD
    • 7.1.4. Generating color in a single panel configuration - Color filters
    • 7.1.5. Generating color in a single panel configuration - Field sequential color (FSC)
    • 7.1.6. Generating color in three panel configuration
  • 7.2. Transmissive LCD microdisplay
  • 7.3. OLED on silicon microdisplays
  • 7.4. LED microdisplays

8. MICRODISPLAY TECHNOLOGY PROVIDERS

  • 8.1. OLED microdisplays
    • 8.1.1. eMagin
    • 8.1.2. SONY
    • 8.1.3. MICROOLED
    • 8.1.4. Dresden Microdisplay (DMD)
    • 8.1.5. Yunnan OLiGHTECK
  • 8.2. LCoS microdisplays
    • 8.2.1. Himax Display
    • 8.2.2. HOLOEYE
    • 8.2.3. Syndiant
    • 8.2.4. ForthDD
  • 8.3. Transmissive LCD Microdisplays
    • 8.3.1. Epson Corporation
    • 8.3.2. Kopin
  • 8.4. microLED microdisplays
    • 8.4.1. mLED
    • 8.4.2. infiniLED
    • 8.4.3. Lumiode
    • 8.4.4. Luxvue
    • 8.4.5. Ostendo
  • 8.5. Some examples of microdisplay products
  • 8.6. Comparison of microdisplay technologies

9. OPTICS ARCHITECTURES FOR HEAD MOUNTED DISPLAYS

  • 9.2. Freespace Optics see-through architectures
    • 9.2.1. Flat combiner architectures
    • 9.2.2. Curved combiner architectures
    • 9.2.3. Freeform, total internal reflection (TIR) combiners
  • 9.3. Waveguide/lightguide see-through architectures
    • 9.3.1. Diffractive waveguide
    • 9.3.2. Holographic waveguide
    • 9.3.3. Polarized waveguide
    • 9.3.4. Reflective waveguide
    • 9.3.5. "Clear-Vu" reflective waveguide
    • 9.3.6. Switchable waveguide
  • 9.4. Other approaches to see-through displays
    • 9.4.1. Innovega
    • 9.4.2. Olympus
    • 9.4.3. Others
  • 9.5. Occlusion architectures
    • 9.5.1. Immersion display magnifier architectures
    • 9.5.2. Micro-mirror arrays
  • 9.6. Comparison of optics approaches for head mounted displays
  • 9.7. Suppliers of optical engines
    • 9.7.1. Digilens - SBG Labs
    • 9.7.2. eMagin
    • 9.7.3. Himax Displays
    • 9.7.4. HOLOEYE
    • 9.7.5. Kopin
    • 9.7.6. Lumus
    • 9.7.7. Laster

10. METRICS AND REQUIREMENTS IN AR AND VR DISPLAYS

  • 10.1. Field of view (FOV) and resolution
  • 10.2. Latency
  • 10.3. Parallax
  • 10.4. Distortions & aberrations
  • 10.5. Summary of optics and display requirements for AR and VR
  • 10.6. User interface. Voice & Gesture recognition

11. POWER SUPPLY

  • 11.1. Batteries for Smart Glasses and Lenses
    • 11.1.1. Energy storage technologies in consumer electronics
  • 11.2. Battery market size
  • 11.3. The emergence of wearables
  • 11.4. LG Chem's offerings to the wearable market
  • 11.5. Apple's approach to wearable technology
  • 11.6. Samsung SDI - never falling behind
  • 11.7. Nokia's contribution
  • 11.8. Limited production-STMicroelectronics
  • 11.9. Showa Denko Packaging / Semiconductor Energy Laboratory
  • 11.10. Kokam and RouteJade, Korea
  • 11.11. Initial conclusions on energy storage for smart eyewear.

12. INTERVIEWS

  • 12.1. Atheer Labs
  • 12.2. Avegant
  • 12.3. FlexEl, LLC
  • 12.4. Imprint Energy, Inc
  • 12.5. Jenax
  • 12.6. Kopin Corporation
  • 12.7. MicroOLED
  • 12.8. Oculus
  • 12.9. Optinvent
  • 12.10. Ricoh
  • 12.11. Royole Corporation
  • 12.12. Seiko Epson Corporation
  • 12.13. Vuzix

13. FORECASTS

  • 13.1. Smart contact lenses
  • 13.2. Smartglasses

IDTECHEX RESEARCH REPORTS AND CONSULTANCY

TABLES

  • 1.1. Smart contact lenses for glaucoma 2016-2026
  • 1.2. Smart contact lenses for diabetes 2016-2026
  • 1.3. AR and VR 2016-2026 - units (million)
  • 1.4. AR and VR 2016-2026 - $ /unit
  • 1.5. AR and VR 2016-2026 - revenue ($ million)
  • 5.1. A comparison table looking into features of smart eyewear devices
  • 5.2. Quick comparison of 6 smartglasses
  • 8.1. Commercially available microdisplays (Non - exhaustive list)
  • 8.2. Technology comparison between LCoS, ¥ì-LED and ¥ì-OLED devices
  • 9.2. Comparative table of see-through optics design approaches.
  • 10.1. Metrics for AR and VR headsets
  • 11.1. Global market for all small batteries for use in small devices $ billion
  • 11.2. Shapes of battery: advantages and disadvantages
  • 11.3. Summary of the EnFilm¢â rechargeable thin film lithium battery
  • 13.1. Smart contact lenses for glaucoma 2016-2026
  • 13.2. Smart contact lenses for diabetes 2016-2026
  • 13.3. AR and VR 2016-2026 - units (million)
  • 13.4. AR and VR 2016-2026 - $ /unit
  • 13.5. AR and VR 2016-2026 - revenue ($ million)

FIGURES

  • 1.1. Wearable sensor, units sold. Forecast 2015-2025
  • 1.2. Two waves of sensors integrated in wearables.
  • 1.3. Smart eyewear technology: Near eye
  • 1.4. Smart eyewear technology: On eye
  • 1.5. The four major challenges affecting proliferation of eye-worn computers
  • 1.6. Smart contact lenses revenue (US$ million) 2016-2026
  • 1.7. AR and VR 2016-2026 - units (million)
  • 1.8. AR and VR 2016-2026 - $ /unit
  • 1.9. AR and VR 2016-2026 - revenue ($ million)
  • 2.1. Lens replacement frequency in the USA, the biggest market for all contact lenses, in 2014
  • 3.1. Prototype lens developed by google and Novartis, incorporating a sensor and a chip and antenna used to receive power and transmit data
  • 3.2. The prototype lens developed at KIST, featuring sensors, microfluidic channels and on-board power supply
  • 3.3. The Vibe device from DexCom and Animas, (a division of Johnson & Johnson) for continuous glucose monitoring (CGM). Dexcom CGM sensor technology is approved for up to seven days of continuous wear with one of the smallest introduce
  • 3.4. Medella Health's first prototypes of what is to become a continuous glucose monitoring system is featured on the company's website
  • 3.5. The soft contact lens-like sensor, with its MEMS antenna (golden rings), its MEMS sensor (ring close to the outer edge), and microprocessor
  • 3.6. Sensor placed on the eye, centered on the cornea with no elements in the line of sight
  • 3.7. An illustration that shows the various components of the Triggerfish¢ç solution by Sensimed placed on the body. [1] Contact lens with sensor [2] adhesive antenna [3] cable [4] portable recorder
  • 3.8. Microfluidic intraocular pressure (IOP) sensor
  • 3.9. Similar simple smart lenses demonstrated at Auburn University in 2011
  • 3.10. A snapshot from Google's patent application for a micro camera component to compliment smart contact lenses
  • 3.11. Schematic from the Google patent application on a multi-sensor contact lens
  • 4.1. Lens concept: University of Washington
  • 5.1. Google Glass
  • 5.2. Infographic of how the Google Glass display works
  • 5.3. The Vuzix M100 primary components
  • 5.4. Mounting options for the M100
  • 5.5. The Epson Moverio BT- 200 smartglasses.
  • 5.6. The Epson Moverio Pro BT-200
  • 5.7. Recon Jet main components
  • 5.8. Recon Jet display
  • 5.9. The ORA 1 main features
  • 5.10. The two configurations for ORA-1's display, in "AR" and "glance" modes.
  • 5.11. The ORA - X announced by Optinvent, a hybrid between smartglasses and smart headphones
  • 5.12. Meta 1 and Meta Pro
  • 5.13. ODG R-7 features
  • 5.14. The Microsoft Hololens
  • 5.15. Promotional images for the Hololens, indicating the potential of the device
  • 5.16. With Skype video chatting, HoloLens users can let others see through their eyes to help with tasks and even doodle right on top of your line of vision
  • 5.17. The SONY SmartEyeGlass
  • 5.18. Schematic of the main components necessary for the GiveVision software
  • 5.19. Quick comparison of 6 smartglasses
  • 6.1. The Google Cardboard
  • 6.2. The Oculus Rift latest iteration, as expected to look when it hits the market in 2016
  • 6.3. Project Morpheus prototype
  • 6.4. The Samsung Gear VR- Innovator edition, powered by Oculus, which was available for sale for developers and early adopters for $200 throughout most of 2015.
  • 6.5. The Samsung Gear VR, available for sale at $100. Details of the padding (for comfort when worn) and the user interface (touchpad)
  • 6.6. The Zeiss VCR One available for $120
  • 6.7. The Avegant Glyph headset available for pre-order at $499
  • 6.8. The MergeVR headset
  • 6.9. The HTC Vive.
  • 7.1. Basic structure of an LCoS microdisplay
  • 7.2. Optical principle of an LCoS microdisplay
  • 7.3. Generating colour with a FLCoS microdisplay
  • 7.4. The 8-bit red subfield and the complete 24-bit full color TDI rendered frame
  • 7.5. Color filter LCoS and diagram of image generation in a front-lit LCoS (FL LCoS) microdisplay: in this case, the light source, light guide are integrated into the LCoS microdisplay
  • 7.6. Schematic representation of a 3-panel LCoS configuration
  • 7.7. Structure of an OLED on silicon microdisplay
  • 7.8. Schematic of light emission and the generation of a collimated beam in a sapphire LED wafer.
  • 8.1. Prototype incorporating eMagin's 4MPixel square OLED on silicon microdisplays displays, demonstrated in June 2015 at AWE15
  • 8.2. SONY 0.61in OLED microdisplay 0 with a 1280X1024 resolution
  • 8.3. OLED microdisplay from MICROOLED
  • 8.4. Color filter, front-lit microdisplay from Himax Display
  • 8.5. A HOLOEYE 0.55in diagonal WXGA (1280 x 768Pixel) CFS LCOS Microdisplay
  • 8.6. Cumulative shipments of Epson's HTPS panels 1992-2014
  • 8.7. Kopin demonstrated a prototype of its Solos smartglasses at CES 2016, with a built-in 4-mm module Pupil, hidden behind the rim and practically invisible from the outside.
  • 8.8. mLED LED microdisplay
  • 8.9. Lumiode microdisplays
  • 8.10. Each pixel of the quantum-photonic-imager device consists of a vertical stack of multiple LED layers
  • 8.11. MicroLED array with a 10¥ìm pitch
  • 8.12. Microdisplay technologies: spider diagram of comparison of key metrics
  • 8.13. Microdisplay technologies: table of comparison of key metrics
  • 9.1. a. Non-pupil forming (or magnifier lens) optical design. b. Pupil forming (or relay lens) optical design
  • 9.2. Cube and half-silvered mirror designs for beam splitters, incident light arrives at a 45¡Æ angle and part of it is transmitted while part of it is reflected
  • 9.3. Schematic of Laster's EnhancedView¢â technology
  • 9.4. Schematic of a freeform TIR combiner structure. The corrector allows for the system's see-through functionality.
  • 9.5. Schematic representation of the diffractive wavequide technique invented by Nokia and licensed to Vuzix (left) and an early Nokia prototype based on this principle (right).
  • 9.6. SONY's holographic waveguide architecture
  • 9.7. Konica Minolta's holographic waveguide architecture
  • 9.8. Optinvent's patented monolithic waveguide and a Clear-Vu prototype
  • 9.9. Innovega contact lenses and basic schematic of the operating principle of the system
  • 9.10. WF05 prism optic from eMagin.
  • 9.11. The Lumus OE-40 display module
  • 10.1. FOVs for some devices, occlusion (VR) or see-through (AR)
  • 10.2. Angular resolutions vs. FOV. b. Reaching the human eye's resolution limit: pixel requirements for different FOVs and current status.
  • 10.3. The Soli chip
  • 10.4. The FOVE VR headset uses infrared sensors to track eye as well as head movement
  • 11.1. Schematic of smart and portable electronic devices within the energy storage classification
  • 11.2. Energy Storage for Smart and Portable Electronic Devices within the Energy Storage Space
  • 11.3. Global market for all small batteries for use in small devices $ billion
  • 11.4. Changes towards wearable devices
  • 11.5. Flexible cable-type lithium ion battery
  • 11.6. LG Chem's stepped battery
  • 11.7. Curved battery developed by LG Chem
  • 11.8. Terraced batteries used for new MacBook
  • 11.9. Apple's patent of flexible battery pack
  • 11.10. Curved batteries developed by Samsung SDI
  • 11.11. Samsung SDI showed their new flexible, rollable battery at InterBattery 2014
  • 11.12. Nokia's rollable battery
  • 11.13. EnFilm: Rechargeable thin film lithium battery
  • 11.14. Structure of ultra-thin lithium-ion battery developed by Showa Denko Packaging
  • 11.15. Different shapes of the ultra-thin lithium-ion battery.
  • 11.16. Flexible battery developed by Semiconductor Energy Laboratory
  • 11.17. Battery samples from Kokam and RouteJade
  • 11.18. The Google Glass battery.
  • 11.19. Effect of cell thickness on energy density
  • 11.20. Printed zinc polymer rechargeable chemistry battery from Imprint Energy
  • 13.1. Smart contact lenses revenue number (thousand) 2016-2026
  • 13.2. Smart contact lenses unit price (US$) 2016-2026
  • 13.3. Smart contact lenses revenue (US$ million) 2016-2026
  • 13.4. AR and VR 2016-2026 - units (million)
  • 13.5. AR and VR 2016-2026 - $ /unit
  • 13.6. AR and VR 2016-2026 - revenue ($ million)

ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.