ȸ¿ø°¡ÀÔ | ¿¬¶ôó | »çÀÌÆ®¸Ê | English

      È¸»ç¼Ò°³ | ¸®Æ÷Æ® | Ä¿½ºÅÒ ¸®¼­Ä¡ | °í°´Áö¿ø


·Î±×ÀÎ

Ä«Å×°í¸®

À¯/¹«¼±Åë½Å

Àü±â/ÀüÀÚ

µðÁöÅбâ±â/¹Ìµð¾î/¹æ¼Û

Information Technology

¿¡³ÊÁö

»ý¸í°øÇÐ

È­ÇÐ/½Å¼ÒÀç

ÀÚµ¿Â÷

ȯ°æ

ÀϹݼҺñÀç

¸¶ÄÉÆÃ/±¤°í

±ÝÀ¶

°Ç¼³

±³Åë/¿î¼Û

¼ÒºñÀÚÁ¶»ç

¹æÀ§/Ç×°ø/¿ìÁÖ

½ÄÀ½·á

Áß°ø¾÷

±³À°

±â°è

¹«¿ª

½ºÆ÷Ã÷/·¹Àú

ÇØ¿î/Á¶¼±

ÆмÇ

Á¤ºÎ/Á¤Ã¥

°ø¿¹/±Í±Ý¼Ó

ÄÄÆÛ´Ï ÇÁ·ÎÆÄÀÏ

±âŸ»ê¾÷

 
ÇöÀçÀ§Ä¡ : HOME > ¸®Æ÷Æ® > ¿¡³ÊÁö > ¹èÅ͸®
Electrochemical Double Layer Capacitors: Supercapacitors 2015-2025
¹ßÇà»ç IDTechEx

¹ßÇàÀÏ 2016-04
ºÐ·® 398 pages
¼­ºñ½ºÇüÅ Report
ÆǸŰ¡°Ý

ÀμâÇϱâ

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. A huge opportunity but a relatively neglected sector
1.1.1. Relative pace of improvement
1.2. Objectives of further development
1.2.1. Most promising routes
1.2.2. Geographical and product emphasis.
1.3. Forecasting assumptions
1.4. Market forecasts 2015-2025
1.5. Supercapacitor applications by manufacturer
1.6. Reality Checks
1.7. Applications
1.7.1. Replacing some batteries
1.7.2. Supercapacitors extend battery and fuel cell life
1.7.3. Supercapacitors on batteries: more than meets the eye
1.8. AEDLC/supercabatteries
1.8.1. Supercapacitor technology roadmap including lithium-ion capacitors (AEDLC) 2015-2025
1.9. The technology and its future
1.9.1. Timeline for supercapacitor market adoption and technical achievements
1.9.2. Comparison with capacitors and batteries
1.9.3. Replacing lead-acid and NiCd batteries
1.9.4. Most promising improvements ahead
1.9.5. Aqueous and non-aqueous electrolytes
1.9.6. Prospect of radically different battery and capacitor shapes
1.9.7. Fixing the limitations
1.10. Supercapacitor sales have a new driver: safety
1.11. Change of leadership of the global value market?
1.12. Battery and fuel cell management with supercapacitors
1.13. Graphene vs other carbon forms in supercapacitors
1.14. Environmentally friendlier and safer materials
1.15. Safer separators
1.16. Printing supercapacitors
1.17. New manufacturing site in Europe
1.18. Latest Performance Benchmark
1.19. Progress in adoption of Hybrid Supercapacitors
1.20. Supercapacitor Car is the European Car of the Year 2014
1.21. Structural Components are the Future
2. INTRODUCTION
2.1. Nomenclature
2.2. Batteries and capacitors converge
2.2.1. What is a battery?
2.2.2. Battery history
2.2.3. Analogy to a container of liquid
2.2.4. Construction of a battery
2.2.5. Many shapes of battery
2.2.6. Single use vs rechargeable batteries
2.2.7. What is a capacitor?
2.2.8. Capacitor history
2.2.9. Analogy to a spring
2.2.10. Capacitor construction
2.2.11. Supercapacitor construction
2.2.12. Limitations of energy storage devices
2.2.13. Battery safety
2.2.14. A glimpse at the new magic
2.3. Improvement in performance taking place with components
2.4. History
2.5. What does a supercapacitor for small devices look like?
2.6. Supercapacitors and supercabattery basics
2.6.1. Basic geometry
2.6.2. Charging
2.6.3. Discharging and cycling
2.6.4. Energy density
2.6.5. Battery-like variants: Pseudocapacitors, supercabatteries
2.6.6. New shapes
2.6.7. Achieving higher voltages
2.6.8. Laminar biodegradable option
2.6.9. Regenerative braking
2.7. Structural components are the future
3. LATEST RESEARCH
3.1. Objectives
3.1.1. Cost reduction
3.1.2. Most promising routes
3.2. Environmentally friendlier and safer materials in supercapacitors.
3.2.1. Environmentally friendlier
3.2.2. Safer Separators that allow better performance.
3.3. Better electrolytes and electrodes
3.3.1. Oshkosh Nanotechnology
3.3.2. Better carbon technologies
3.4. Carbon nanotubes
3.4.1. Carbon aerogel
3.4.2. Solid activated carbon
3.4.3. Y-Carbon USA
3.4.4. Carbide derived carbon
3.5. Graphene
3.5.2. Graphene Energy
3.5.3. Drexel University
3.5.4. Rensselaer Polytechnic Institute
3.5.5. Lomiko Metals Inc and Graphene Laboratories
3.6. Graphene vs other carbon forms in supercapacitors
3.7. Prevention of capacity fading
3.8. Microscopic supercapacitors become possible
3.9. Fundamentals
3.10. Flexible, paper and transparent supercapacitors
3.10.1. University of Minnesota
3.10.2. University of Southern California
3.10.3. Rensselaer Polytechnic Institute USA
3.10.4. King Abdullah University of Science & Technology Saudi Arabia
3.11. Woven wearable supercapacitors
3.11.1. University of South Carolina
3.12. Fiber supercapacitors
3.12.1. Drexel University USA
3.12.2. Imperial College London
3.12.3. Powerweave European Commission
3.12.4. Supercapacitor yarn in China
3.12.5. University of Delaware USA
3.12.6. University of Wollongong Australia
3.13. Skeleton and skin strategy improves supercapacitor
3.14. National University of Singapore: a competitor for supercapacitors?
3.15. Supercabattery developments
3.16. Synthesizing enhanced materials for supercapacitors
3.17. Boost for energy storage of super capacitors
3.18. Woven e-fiber supercapacitors
4. APPLICATIONS IN VEHICLES
4.1. Supercapacitors in Cars (Peugeot, Continental, Mazda, Chrysler, Caterpillar, Chrysler, EnerDel, FastCap Systems, Ioxus, Johnson Controls, JSR Micro, Maxwell Technologies, Saft, Tardec, United Chemicon and Toyota)
4.1.1. Supercapacitors in Racing Cars (Toyota, Renault)
4.1.2. Supercapacitors as battery lifetime extenders in vehicles
4.1.3. Supercapacitors as Fuel Cell lifetime extenders (Riversimple, Imperial College London)
4.2. Buses and trucks
4.2.1. Fast charge-discharge made possible
4.2.2. Much better cold start and battery use in trucks
4.2.3. Capabus: electric buses without batteries
4.2.4. Oshkosh military truck without batteries
4.2.5. Why supercapacitors instead of batteries?
4.2.6. Regenerative Braking Systems for industrial and commercial vehicles
4.2.7. Fork lifts, cranes regen, peak power, battery life improvement
4.3. Progress and adoption of hybrid supercapacitors
4.4. Range extender support
4.5. Ten year forecast for electric cars, hybrids and their range extenders
4.6. Hybrid and pure electric vehicles compared
4.7. Hybrid market drivers
4.8. What will be required of a range extender
4.9. Three generations of range extender
4.10. Energy harvesting - mostly ally not alternative
4.11. Key trends for range extended vehicles
4.12. Electric vehicle demonstrations and adoption
4.13. Hybrid electric vehicles
4.14. USCAR USA
4.15. Racing cars
4.16. Folding e-bike
4.17. Railway engine power recuperation
4.18. Siemens Germany
4.19. Supercapacitors for fuel cell vehicles - HyHEELS & ILHYPOS
5. SUPERCAPACITORS IN CONSUMER ELECTRONICS, WIRELESS SYSTEMS AND ENERGY HARVESTING
5.1. Thinner and lighter consumer electronics
5.1.1. From iPad Air to Huawei Ascend P6, devices getting thinner
5.2. Increasing Multifunctionality: From Simon to IPhone.
5.3. An analysis of power consumption in smartphones
5.4. Supercapacitors as battery performance enhancers - battery life extension
5.5. Supercapacitors in consumer electronics going to mass production - recent market announcements
5.5.1. Cap-XX
5.5.2. Paper Battery Co.
5.6. Supercapacitors integration in consumer electronics by Cambridge University /Nokia Research Centre
5.6.1. High Frequency Supercapacitors
5.6.2. Stretchable Capacitors
5.6.3. Microcapacitors
5.6.4. Embedding with Flexible Printed Circuits
5.7. Supercapacitors used to improve mobile camera's flash
5.8. Laptop solid state drives use supercapacitors
5.9. Wireless systems and Burst-Mode Communications
5.10. Energy harvesting
5.10.1. Bicycles and wristwatches
5.10.2. Industrial electronics: vibration harvesters
5.10.3. Extending mobile phone use
5.10.4. Human power to recharge portable electronics
6. RENEWABLE ENERGY AND OTHER APPLICATIONS
6.1. Renewable energy
6.2. The Challenges and Solutions
6.3. NREL USA
6.4. Quick Charge Hand Tools
6.5. Innotek DC-DC converters
7. PATENT TRENDS BY DR. VICTOR ZHITOMIRSKY
7.1. The PatAnalyse/ IDTechEx patent search strategy
7.1.1. Revealing many underlying business and scientific trends
7.1.2. Absolute and normalised patent maps
7.2. Generic Supercapacitor technologies
7.2.1. Top 50 Assignees vs Technical categories
7.2.2. Top 50 Assignees vs Priority Years
7.2.3. Technical categories vs Priority Years
7.2.4. Countries of origin vs Priority Years
7.2.5. Technical categories vs Countries of origin
7.3. Technical categories vs National Patent Office Country
7.4. About PatAnalyse
8. PROFILES OF OVER 70 MANUFACTURERS
8.1. ABSL EnerSys
8.2. Ada Technologies USA
8.3. Advanced Capacitor Technologies Japan
8.4. Asahi Kasei-FDK Japan
8.5. AVX Mexico
8.6. Bainacap China
8.7. Bolloré France
8.8. Baoding Yepu New Energy China
8.9. Beijing HCC Energy Tech China
8.10. Cap-XX Australia
8.11. CDE Cornell Dubilier USA
8.12. Cellergy Israel
8.13. Chaoyang Liyuan New Energy China
8.14. Cooper Bussmann USA
8.15. Daying Juneng Technology and Development China
8.16. Dongguan Amazing Electronic China
8.17. Dongguan Fuhui Electronics Sales China
8.18. Dongguan Gonghe Electronics China
8.19. Dongguan WIN WIN Supercap Electronic China
8.20. East Penn Manufacturing Co. USA
8.21. Ecoult Australia
8.22. Elbit Energy Israel
8.23. ELIT Russia
8.24. ESMA Russia
8.25. Evans Capacitor Company USA
8.26. FastCAP Systems USA
8.27. FDK Corp Japan
8.28. Furukawa Battery Co Japan
8.29. GHC Electronic Co China
8.30. Graphene Energy Inc USA
8.31. Handong Heter Battery China
8.32. Harbin Jurong Newpower China
8.33. Hitachi Japan
8.34. Honda Japan
8.35. Illinois Capacitor USA
8.36. Ionova USA
8.37. Ioxus USA
8.38. JM Energy Corp Japan
8.39. KAM China
8.40. Kankyo Japan
8.41. Korchip Korea
8.42. LS Mtron Korea
8.43. Maxwell Technologies USA
8.44. Meidensha Corp. Japan
8.45. Murata Japan
8.46. Nanotecture, UK (now only licensing)
8.47. Nanotune Technologies USA
8.48. NEC Tokin Japan
8.49. Nesscap Energy Inc Korea
8.50. Nichicon Japan
8.51. Nippon Chemi-con Japan
8.52. Panasonic Japan
8.53. Paper Battery Company USA
8.54. PowerSystem Co Japan
8.55. Quantum Wired USA
8.56. Ryan Technology Taiwan
8.57. SAFT France
8.58. Shandong Heter Lampson Electronic China
8.59. Shanghai Aowei Technology Development China
8.60. Shanghai Green Tech China
8.61. Shanghai Power Oriental International Trade China
8.62. Shenzhen Forecon Super Capacitor Technology China
8.63. Sino Power Star China
8.64. Skeleton Technologies Estonia
8.65. SPL USA
8.66. Taiyo Yuden Japan
8.67. Tavrima Canada
8.68. Vina Technology Co Korea
8.69. WIMA Spezialvertrieb Elektronischer Bauelemente Germany
8.70. Yo-Engineering Russia
8.71. Yunasko Ukraine
9. COMPANY PROFILES
9.1. Aowei Technology
9.2. Cap-XX
9.3. Cellergy
9.4. Elbit Systems
9.5. ELTON
9.6. Hutchinson SA
9.7. Ioxus
9.8. Maxwell Technologies Inc
9.9. Nesscap Energy
9.10. Paper Battery Company
9.11. Saft Batteries
9.12. Skeleton Technologies
9.13. WIMA Spezialvertrieb elektronischer Bauelemente
9.14. Yunasko




ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸º¸È£Á¤Ã¥ | ÀÌ¿ë¾à°ü | ¹è¼Û/°áÁ¦¾È³» | ÀÌ¿ë¾È³»

¼­¿ï½Ã °­³²±¸ ³íÇöµ¿ 210-1 »ï¿øºôµù | ȸ»ç¸í : (ÁÖ)¿¤¾Ø¿¡Ä¡
´ëÇ¥ÀüÈ­ : 02-554-0001 / Æѽº : 02-3444-5501 / À̸ÞÀÏ : sales@landh.co.kr
Copyright ¨Ï 2008 LNH, Inc. All rights reserved.